Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nucleic Acids Res ; 51(D1): D337-D344, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399486

RESUMEN

The 5' and 3' untranslated regions of eukaryotic mRNAs (UTRs) play crucial roles in the post-transcriptional regulation of gene expression through the modulation of nucleo-cytoplasmic mRNA transport, translation efficiency, subcellular localization, and message stability. Since 1996, we have developed and maintained UTRdb, a specialized database of UTR sequences. Here we present UTRdb 2.0, a major update of UTRdb featuring an extensive collection of eukaryotic 5' and 3' UTR sequences, including over 26 million entries from over 6 million genes and 573 species, enriched with a curated set of functional annotations. Annotations include CAGE tags and polyA signals to label the completeness of 5' and 3'UTRs, respectively. In addition, uORFs and IRES are annotated in 5'UTRs as well as experimentally validated miRNA targets in 3'UTRs. Further annotations include evolutionarily conserved blocks, Rfam motifs, ADAR-mediated RNA editing events, and m6A modifications. A web interface allowing a flexible selection and retrieval of specific subsets of UTRs, selected according to a combination of criteria, has been implemented which also provides comprehensive download facilities. UTRdb 2.0 is accessible at http://utrdb.cloud.ba.infn.it/utrdb/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Eucariontes , ARN Mensajero , Regiones no Traducidas , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5' , Eucariontes/genética , Células Eucariotas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Brief Bioinform ; 22(2): 616-630, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33279989

RESUMEN

Various next generation sequencing (NGS) based strategies have been successfully used in the recent past for tracing origins and understanding the evolution of infectious agents, investigating the spread and transmission chains of outbreaks, as well as facilitating the development of effective and rapid molecular diagnostic tests and contributing to the hunt for treatments and vaccines. The ongoing COVID-19 pandemic poses one of the greatest global threats in modern history and has already caused severe social and economic costs. The development of efficient and rapid sequencing methods to reconstruct the genomic sequence of SARS-CoV-2, the etiological agent of COVID-19, has been fundamental for the design of diagnostic molecular tests and to devise effective measures and strategies to mitigate the diffusion of the pandemic. Diverse approaches and sequencing methods can, as testified by the number of available sequences, be applied to SARS-CoV-2 genomes. However, each technology and sequencing approach has its own advantages and limitations. In the current review, we will provide a brief, but hopefully comprehensive, account of currently available platforms and methodological approaches for the sequencing of SARS-CoV-2 genomes. We also present an outline of current repositories and databases that provide access to SARS-CoV-2 genomic data and associated metadata. Finally, we offer general advice and guidelines for the appropriate sharing and deposition of SARS-CoV-2 data and metadata, and suggest that more efficient and standardized integration of current and future SARS-CoV-2-related data would greatly facilitate the struggle against this new pathogen. We hope that our 'vademecum' for the production and handling of SARS-CoV-2-related sequencing data, will contribute to this objective.


Asunto(s)
COVID-19/virología , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , SARS-CoV-2/genética , COVID-19/epidemiología , Humanos , Pandemias
3.
Stem Cells ; 39(8): 1107-1119, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33739574

RESUMEN

The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.


Asunto(s)
Células-Madre Neurales , Proteínas Proto-Oncogénicas c-fos , Factores de Transcripción SOXB1 , Animales , Proliferación Celular/genética , Autorrenovación de las Células/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Células-Madre Neurales/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
4.
Genome Res ; 28(6): 789-799, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29712753

RESUMEN

Mammalian centromeres are associated with highly repetitive DNA (satellite DNA), which has so far hindered molecular analysis of this chromatin domain. Centromeres are epigenetically specified, and binding of the CENPA protein is their main determinant. In previous work, we described the first example of a natural satellite-free centromere on Equus caballus Chromosome 11. Here, we investigated the satellite-free centromeres of Equus asinus by using ChIP-seq with anti-CENPA antibodies. We identified an extraordinarily high number of centromeres lacking satellite DNA (16 of 31). All of them lay in LINE- and AT-rich regions. A subset of these centromeres is associated with DNA amplification. The location of CENPA binding domains can vary in different individuals, giving rise to epialleles. The analysis of epiallele transmission in hybrids (three mules and one hinny) showed that centromeric domains are inherited as Mendelian traits, but their position can slide in one generation. Conversely, centromere location is stable during mitotic propagation of cultured cells. Our results demonstrate that the presence of more than half of centromeres void of satellite DNA is compatible with genome stability and species survival. The presence of amplified DNA at some centromeres suggests that these arrays may represent an intermediate stage toward satellite DNA formation during evolution. The fact that CENPA binding domains can move within relatively restricted regions (a few hundred kilobases) suggests that the centromeric function is physically limited by epigenetic boundaries.


Asunto(s)
Proteína A Centromérica/genética , Centrómero/genética , ADN Satélite/genética , Evolución Molecular , Animales , Autoantígenos/genética , Cromatina/genética , Inestabilidad Genómica/genética , Caballos , Mamíferos
5.
PLoS Comput Biol ; 16(12): e1008488, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370256

RESUMEN

NF-Y is a trimeric Transcription Factor -TF- which binds with high selectivity to the conserved CCAAT element. Individual ChIP-seq analysis as well as ENCODE have progressively identified locations shared by other TFs. Here, we have analyzed data introduced by ENCODE over the last five years in K562, HeLa-S3 and GM12878, including several chromatin features, as well RNA-seq profiling of HeLa cells after NF-Y inactivation. We double the number of sequence-specific TFs and co-factors reported. We catalogue them in 4 classes based on co-association criteria, infer target genes categorizations, identify positional bias of binding sites and gene expression changes. Larger and novel co-associations emerge, specifically concerning subunits of repressive complexes as well as RNA-binding proteins. On the one hand, these data better define NF-Y association with single members of major classes of TFs, on the other, they suggest that it might have a wider role in the control of mRNA production.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Conjuntos de Datos como Asunto , Células HeLa , Humanos , Análisis de Secuencia de ARN
6.
Plant Cell Environ ; 43(1): 55-75, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31677283

RESUMEN

During their lifespan, plants respond to a multitude of stressful factors. Dynamic changes in chromatin and concomitant transcriptional variations control stress response and adaptation, with epigenetic memory mechanisms integrating environmental conditions and appropriate developmental programs over the time. Here we analyzed transcriptome and genome-wide histone modifications of maize plants subjected to a mild and prolonged drought stress just before the flowering transition. Stress was followed by a complete recovery period to evaluate drought memory mechanisms. Three categories of stress-memory genes were identified: i) "transcriptional memory" genes, with stable transcriptional changes persisting after the recovery; ii) "epigenetic memory candidate" genes in which stress-induced chromatin changes persist longer than the stimulus, in absence of transcriptional changes; iii) "delayed memory" genes, not immediately affected by the stress, but perceiving and storing stress signal for a delayed response. This last memory mechanism is described for the first time in drought response. In addition, applied drought stress altered floral patterning, possibly by affecting expression and chromatin of flowering regulatory genes. Altogether, we provided a genome-wide map of the coordination between genes and chromatin marks utilized by plants to adapt to a stressful environment, describing how this serves as a backbone for setting stress memory.


Asunto(s)
Aclimatación , Adaptación Fisiológica/genética , Epigénesis Genética , Flores/fisiología , Estrés Fisiológico/genética , Zea mays/fisiología , Cromatina/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/fisiología , Sequías , Epigenómica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Código de Histonas , Histonas/genética , Histonas/metabolismo , Inmunoprecipitación , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Análisis de Secuencia de ARN , Transcriptoma
7.
Nucleic Acids Res ; 46(8): e46, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29390085

RESUMEN

RNA sequencing (RNA-Seq) has become the experimental standard in transcriptome studies. While most of the bioinformatic pipelines for the analysis of RNA-Seq data and the identification of significant changes in transcript abundance are based on the comparison of two conditions, it is common practice to perform several experiments in parallel (e.g. from different individuals, developmental stages, tissues), for the identification of genes showing a significant variation of expression across all the conditions studied. In this work we present RNentropy, a methodology based on information theory devised for this task, which given expression estimates from any number of RNA-Seq samples and conditions identifies genes or transcripts with a significant variation of expression across all the conditions studied, together with the samples in which they are over- or under-expressed. To show the capabilities offered by our methodology, we applied it to different RNA-Seq datasets: 48 biological replicates of two different yeast conditions; samples extracted from six human tissues of three individuals; seven different mouse brain cell types; human liver samples from six individuals. Results, and their comparison to different state of the art bioinformatic methods, show that RNentropy can provide a quick and in depth analysis of significant changes in gene expression profiles over any number of conditions.


Asunto(s)
Perfilación de la Expresión Génica/estadística & datos numéricos , Análisis de Secuencia de ARN/estadística & datos numéricos , Programas Informáticos , Animales , Encéfalo/metabolismo , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Genes Fúngicos , Marcadores Genéticos , Humanos , Hígado/metabolismo , Masculino , Ratones , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis Espacio-Temporal
8.
Proteomics ; 19(5): e1800300, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30656827

RESUMEN

Heavy methyl Stable Isotope Labeling with Amino acids in Cell culture (hmSILAC) is a metabolic labeling strategy employed in proteomics to increase the confidence of global identification of methylated peptides by MS. However, to this day, the automatic and robust identification of heavy and light peak doublets from MS-raw data of hmSILAC experiments is a challenging task, for which the choice of computational methods is very limited. Here, hmSEEKER, a software designed to work downstream of a MaxQuant analysis for in-depth search of MS peak pairs that correspond to light and heavy methyl-peptide within MaxQuant-generated tables is described with good sensitivity and specificity. The software is written in Perl, and its code and user manual are freely available at Bitbucket (https://bit.ly/2scCT9u).


Asunto(s)
Aminoácidos/análisis , Marcaje Isotópico/métodos , Péptidos/química , Proteómica/métodos , Programas Informáticos , Aminoácidos/metabolismo , Animales , Cromatografía Liquida/métodos , Humanos , Metales Pesados/análisis , Metales Pesados/metabolismo , Metilación , Péptidos/metabolismo , Espectrometría de Masas en Tándem/métodos
9.
Nucleic Acids Res ; 45(21): 12195-12213, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981749

RESUMEN

The integrated activity of cis-regulatory elements fine-tunes transcriptional programs of mammalian cells by recruiting cell type-specific as well as ubiquitous transcription factors (TFs). Despite their key role in modulating transcription, enhancers are still poorly characterized at the molecular level, and their limited DNA sequence conservation in evolution and variable distance from target genes make their unbiased identification challenging. The coexistence of high mono-methylation and low tri-methylation levels of lysine 4 of histone H3 is considered a signature of enhancers, but a comprehensive view of histone modifications associated to enhancers is still lacking. By combining chromatin immunoprecipitation (ChIP) with mass spectrometry, we investigated cis-regulatory regions in macrophages to comprehensively identify histone marks specifically associated with enhancers, and to profile their dynamics after transcriptional activation elicited by an inflammatory stimulation. The intersection of the proteomics data with ChIP-seq and RNA-seq analyses revealed the existence of novel subpopulations of enhancers, marked by specific histone modification signatures: specifically, H3K4me1/K36me2 marks transcribed enhancers, while H3K4me1/K36me3 and H3K4me1/K79me2 combinations mark distinct classes of intronic enhancers. Thus, our MS analysis of functionally distinct genomic regions revealed the combinatorial code of histone modifications, highlighting the potential of proteomics in addressing fundamental questions in epigenetics.


Asunto(s)
Cromatina/metabolismo , Código de Histonas , Macrófagos/metabolismo , Animales , Línea Celular , Elementos de Facilitación Genéticos , Genoma , Histonas/metabolismo , Intrones , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Espectrometría de Masas , Ratones , Proteómica , Transcripción Genética
10.
Glia ; 66(9): 1929-1946, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29732603

RESUMEN

Sox2 is a transcription factor active in the nervous system, within different cell types, ranging from radial glia neural stem cells to a few specific types of differentiated glia and neurons. Mutations in the human SOX2 transcription factor gene cause various central nervous system (CNS) abnormalities, involving hippocampus and eye defects, as well as ataxia. Conditional Sox2 mutation in mouse, with different Cre transgenes, previously recapitulated different essential features of the disease, such as hippocampus and eye defects. In the cerebellum, Sox2 is active from early embryogenesis in the neural progenitors of the cerebellar primordium; Sox2 expression is maintained, postnatally, within Bergmann glia (BG), a differentiated cell type essential for Purkinje neurons functionality and correct motor control. By performing Sox2 Cre-mediated ablation in the developing and postnatal mouse cerebellum, we reproduced ataxia features. Embryonic Sox2 deletion (with Wnt1Cre) leads to reduction of the cerebellar vermis, known to be commonly related to ataxia, preceded by deregulation of Otx2 and Gbx2, critical regulators of vermis development. Postnatally, BG is progressively disorganized, mislocalized, and reduced in mutants. Sox2 postnatal deletion, specifically induced in glia (with GLAST-CreERT2), reproduces the BG defect, and causes (milder) ataxic features. Our results define a role for Sox2 in cerebellar function and development, and identify a functional requirement for Sox2 within postnatal BG, of potential relevance for ataxia in mouse mutants, and in human patients.


Asunto(s)
Ataxia/metabolismo , Vermis Cerebeloso/crecimiento & desarrollo , Vermis Cerebeloso/metabolismo , Neuroglía/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Animales Recién Nacidos , Ataxia/patología , Células Cultivadas , Vermis Cerebeloso/patología , Regulación de la Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones Transgénicos , Mutación , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuroglía/patología , Factores de Transcripción Otx/metabolismo , Factores de Transcripción SOXB1/genética , Transmisión Sináptica/fisiología
11.
EMBO Rep ; 17(12): 1872-1889, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27852622

RESUMEN

MYC deregulation is common in human cancer and has a role in sustaining the aggressive cancer stem cell populations. MYC mediates a broad transcriptional response controlling normal biological programmes, but its activity is not clearly understood. We address MYC function in cancer stem cells through the inducible expression of Omomyc-a MYC-derived polypeptide interfering with MYC activity-taking as model the most lethal brain tumour, glioblastoma. Omomyc bridles the key cancer stemlike cell features and affects the tumour microenvironment, inhibiting angiogenesis. This occurs because Omomyc interferes with proper MYC localization and itself associates with the genome, with a preference for sites occupied by MYC This is accompanied by selective repression of master transcription factors for glioblastoma stemlike cell identity such as OLIG2, POU3F2, SOX2, upregulation of effectors of tumour suppression and differentiation such as ID4, MIAT, PTEN, and modulation of the expression of microRNAs that target molecules implicated in glioblastoma growth and invasion such as EGFR and ZEB1. Data support a novel view of MYC as a network stabilizer that strengthens the regulatory nodes of gene expression networks controlling cell phenotype and highlight Omomyc as model molecule for targeting cancer stem cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes myc , Glioblastoma/genética , Células Madre Neoplásicas/fisiología , Fragmentos de Péptidos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/genética , Inhibidores de la Angiogénesis , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Proliferación Celular , Receptores ErbB/genética , Glioblastoma/fisiopatología , Humanos , Proteínas Inhibidoras de la Diferenciación/genética , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Unión Proteica , Activación Transcripcional , Microambiente Tumoral/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
12.
Nucleic Acids Res ; 44(10): 4684-702, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-26896797

RESUMEN

NF-Y is a trimeric transcription factor (TF), binding the CCAAT box element, for which several results suggest a pioneering role in activation of transcription. In this work, we integrated 380 ENCODE ChIP-Seq experiments for 154 TFs and cofactors with sequence analysis, protein-protein interactions and RNA profiling data, in order to identify genome-wide regulatory modules resulting from the co-association of NF-Y with other TFs. We identified three main degrees of co-association with NF-Y for sequence-specific TFs. In the most relevant one, we found TFs having a significant overlap with NF-Y in their DNA binding loci, some with a precise spacing of binding sites with respect to the CCAAT box, others (FOS, Sp1/2, RFX5, IRF3, PBX3) mostly lacking their canonical binding site and bound to arrays of well spaced CCAAT boxes. As expected, NF-Y binding also correlates with RNA Pol II General TFs and with subunits of complexes involved in the control of H3K4 methylations. Co-association patterns are confirmed by protein-protein interactions, and correspond to specific functional categorizations and expression level changes of target genes following NF-Y inactivation. These data define genome-wide rules for the organization of NF-Y-centered regulatory modules, supporting a model of distinct categorization and synergy with well defined sets of TFs.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Sitios de Unión , Línea Celular , Inmunoprecipitación de Cromatina , ADN/química , ADN/metabolismo , Perfilación de la Expresión Génica , Genoma , Humanos , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN
13.
PLoS Genet ; 11(8): e1005444, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26292210

RESUMEN

In order to study the role played by cellular RNA pools produced by homologous genomic loci in defining the transcriptional state of a silenced gene, we tested the effect of non-functional alleles of the white gene in the presence of a functional copy of white, silenced by heterochromatin. We found that non-functional alleles of white, unable to produce a coding transcript, could reactivate in trans the expression of a wild type copy of the same gene silenced by heterochromatin. This new epigenetic phenomenon of transcriptional trans-reactivation is heritable, relies on the presence of homologous RNA's and is affected by mutations in genes involved in post-transcriptional gene silencing. Our data suggest a general new unexpected level of gene expression control mediated by homologous RNA molecules in the context of heterochromatic genes.


Asunto(s)
Interferencia de ARN , Transcripción Genética , Transportadoras de Casetes de Unión a ATP/genética , Alelos , Animales , Ojo Compuesto de los Artrópodos/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Color del Ojo/genética , Proteínas del Ojo/genética , Femenino , Genes de Insecto , Heterocromatina/genética , Masculino , ARN no Traducido/genética
14.
Genome Res ; 23(8): 1195-209, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23595228

RESUMEN

NF-Y, a trimeric transcription factor (TF) composed of two histone-like subunits (NF-YB and NF-YC) and a sequence-specific subunit (NF-YA), binds to the CCAAT motif, a common promoter element. Genome-wide mapping reveals 5000-15,000 NF-Y binding sites depending on the cell type, with the NF-YA and NF-YB subunits binding asymmetrically with respect to the CCAAT motif. Despite being characterized as a proximal promoter TF, only 25% of NF-Y sites map to promoters. A comparable number of NF-Y sites are located at enhancers, many of which are tissue specific, and nearly half of the NF-Y sites are in select subclasses of HERV LTR repeats. Unlike most TFs, NF-Y can access its target DNA motif in inactive (nonmodified) or polycomb-repressed chromatin domains. Unexpectedly, NF-Y extensively colocalizes with FOS in all genomic contexts, and this often occurs in the absence of JUN and the AP-1 motif. NF-Y also coassociates with a select cluster of growth-controlling and oncogenic TFs, consistent with the abundance of CCAAT motifs in the promoters of genes overexpressed in cancer. Interestingly, NF-Y and several growth-controlling TFs bind in a stereo-specific manner, suggesting a mechanism for cooperative action at promoters and enhancers. Our results indicate that NF-Y is not merely a commonly used proximal promoter TF, but rather performs a more diverse set of biological functions, many of which are likely to involve coassociation with FOS.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Secuencia de Bases , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Secuencia de Consenso , Regulación de la Expresión Génica , Ontología de Genes , Genoma Humano , Células HeLa , Humanos , Células K562 , Anotación de Secuencia Molecular , Especificidad de Órganos , Unión Proteica , Transporte de Proteínas , Secuencias Repetidas Terminales , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
15.
Brief Bioinform ; 14(2): 225-37, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22517426

RESUMEN

Motif discovery has been one of the most widely studied problems in bioinformatics ever since genomic and protein sequences have been available. In particular, its application to the de novo prediction of putative over-represented transcription factor binding sites in nucleotide sequences has been, and still is, one of the most challenging flavors of the problem. Recently, novel experimental techniques like chromatin immunoprecipitation (ChIP) have been introduced, permitting the genome-wide identification of protein-DNA interactions. ChIP, applied to transcription factors and coupled with genome tiling arrays (ChIP on Chip) or next-generation sequencing technologies (ChIP-Seq) has opened new avenues in research, as well as posed new challenges to bioinformaticians developing algorithms and methods for motif discovery.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Algoritmos , Animales , Sitios de Unión/genética , Inmunoprecipitación de Cromatina/estadística & datos numéricos , Biología Computacional , Secuencia de Consenso , ADN/genética , ADN/metabolismo , Perfilación de la Expresión Génica/estadística & datos numéricos , Humanos
16.
Nucleic Acids Res ; 41(Web Server issue): W535-43, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23748563

RESUMEN

Chromatin immunoprecipitation followed by sequencing with next-generation technologies (ChIP-Seq) has become the de facto standard for building genome-wide maps of regions bound by a given transcription factor (TF). The regions identified, however, have to be further analyzed to determine the actual DNA-binding sites for the TF, as well as sites for other TFs belonging to the same TF complex or in general co-operating or interacting with it in transcription regulation. PscanChIP is a web server that, starting from a collection of genomic regions derived from a ChIP-Seq experiment, scans them using motif descriptors like JASPAR or TRANSFAC position-specific frequency matrices, or descriptors uploaded by users, and it evaluates both motif enrichment and positional bias within the regions according to different measures and criteria. PscanChIP can successfully identify not only the actual binding sites for the TF investigated by a ChIP-Seq experiment but also secondary motifs corresponding to other TFs that tend to bind the same regions, and, if present, precise positional correlations among their respective sites. The web interface is free for use, and there is no login requirement. It is available at http://www.beaconlab.it/pscan_chip_dev.


Asunto(s)
Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Programas Informáticos , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCAAT/metabolismo , Línea Celular , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Humanos , Internet , Células K562 , Ratones , Motivos de Nucleótidos , Factor de Transcripción STAT3/metabolismo
17.
Nucleic Acids Res ; 41(Database issue): D125-31, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23118479

RESUMEN

A comprehensive knowledge of all the factors involved in splicing, both proteins and RNAs, and of their interaction network is crucial for reaching a better understanding of this process and its functions. A large part of relevant information is buried in the literature or collected in various different databases. By hand-curated screenings of literature and databases, we retrieved experimentally validated data on 71 human RNA-binding splicing regulatory proteins and organized them into a database called 'SpliceAid-F' (http://www.caspur.it/SpliceAidF/). For each splicing factor (SF), the database reports its functional domains, its protein and chemical interactors and its expression data. Furthermore, we collected experimentally validated RNA-SF interactions, including relevant information on the RNA-binding sites, such as the genes where these sites lie, their genomic coordinates, the splicing effects, the experimental procedures used, as well as the corresponding bibliographic references. We also collected information from experiments showing no RNA-SF binding, at least in the assayed conditions. In total, SpliceAid-F contains 4227 interactions, 2590 RNA-binding sites and 1141 'no-binding' sites, including information on cellular contexts and conditions where binding was tested. The data collected in SpliceAid-F can provide significant information to explain an observed splicing pattern as well as the effect of mutations in functional regulatory elements.


Asunto(s)
Bases de Datos de Proteínas , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Sitios de Unión , Humanos , Internet , Anotación de Secuencia Molecular , Estructura Terciaria de Proteína , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Interfaz Usuario-Computador
18.
RNA ; 18(1): 53-64, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22101243

RESUMEN

Upstream of N-ras (UNR) is a conserved RNA-binding protein that regulates mRNA translation and stability by binding to sites generally located in untranslated regions (UTRs). In Drosophila, sex-specific binding of UNR to msl2 mRNA and the noncoding RNA roX is believed to play key roles in the control of X-chromosome dosage compensation in both sexes. To investigate broader sex-specific functions of UNR, we have identified its RNA targets in adult male and female flies by high-throughput RNA binding and transcriptome analysis. Here we show that UNR binds to a large set of protein-coding transcripts and to a smaller set of noncoding RNAs in a sex-specific fashion. The analyses also reveal a strong correlation between sex-specific binding of UNR and sex-specific differential expression of UTRs in target genes. Validation experiments indicate that UNR indeed recognizes sex-specifically processed transcripts. These results suggest that UNR exploits the transcript diversity generated by alternative processing and alternative promoter usage to bind and regulate target genes in a sex-specific manner.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Regiones no Traducidas , Animales , Drosophila melanogaster/genética , Femenino , Masculino , Regiones Promotoras Genéticas , ARN Mensajero/genética , Factores Sexuales , Transcripción Genética
19.
Nucleic Acids Res ; 40(Web Server issue): W510-5, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22669907

RESUMEN

The regulation of transcription of eukaryotic genes is a very complex process, which involves interactions between transcription factors (TFs) and DNA, as well as other epigenetic factors like histone modifications, DNA methylation, and so on, which nowadays can be studied and characterized with techniques like ChIP-Seq. Cscan is a web resource that includes a large collection of genome-wide ChIP-Seq experiments performed on TFs, histone modifications, RNA polymerases and others. Enriched peak regions from the ChIP-Seq experiments are crossed with the genomic coordinates of a set of input genes, to identify which of the experiments present a statistically significant number of peaks within the input genes' loci. The input can be a cluster of co-expressed genes, or any other set of genes sharing a common regulatory profile. Users can thus single out which TFs are likely to be common regulators of the genes, and their respective correlations. Also, by examining results on promoter activation, transcription, histone modifications, polymerase binding and so on, users can investigate the effect of the TFs (activation or repression of transcription) as well as of the cell or tissue specificity of the genes' regulation and expression. The web interface is free for use, and there is no login requirement. Available at: http://www.beaconlab.it/cscan.


Asunto(s)
Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica , Programas Informáticos , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Humanos , Internet , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Interfaz Usuario-Computador
20.
Nucleic Acids Res ; 40(Database issue): D1168-72, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22123747

RESUMEN

The MITOchondrial genome database of metaZOAns (MitoZoa) is a public resource for comparative analyses of metazoan mitochondrial genomes (mtDNA) at both the sequence and genomic organizational levels. The main characteristics of the MitoZoa database are the careful revision of mtDNA entry annotations and the possibility of retrieving gene order and non-coding region (NCR) data in appropriate formats. The MitoZoa retrieval system enables basic and complex queries at various taxonomic levels using different search menus. MitoZoa 2.0 has been enhanced in several aspects, including: a re-annotation pipeline to check the correctness of protein-coding gene predictions; a standardized annotation of introns and of precursor ORFs whose functionality is post-transcriptionally recovered by RNA editing or programmed translational frameshifting; updates of taxon-related fields and a BLAST sequence similarity search tool. Database novelties and the definition of standard mtDNA annotation rules, together with the user-friendly retrieval system and the BLAST service, make MitoZoa a valuable resource for comparative and evolutionary analyses as well as a reference database to assist in the annotation of novel mtDNA sequences. MitoZoa is freely accessible at http://www.caspur.it/mitozoa.


Asunto(s)
ADN Mitocondrial/química , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Genoma Mitocondrial , Sistema de Lectura Ribosómico , Genes Mitocondriales , Intrones , Proteínas Mitocondriales/genética , Anotación de Secuencia Molecular , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA