Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Strength Cond Res ; 36(2): 346-351, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31895290

RESUMEN

ABSTRACT: Lasevicius, T, Schoenfeld, BJ, Silva-Batista, C, Barros, TdS, Aihara, AY, Brendon, H, Longo, AR, Tricoli, V, Peres, BdA, and Teixeira, EL. Muscle failure promotes greater muscle hypertrophy in low-load but not in high-load resistance training. J Strength Cond Res 36(2): 346-351, 2022-The purpose of this study was to investigate the effects of an 8-week resistance training program at low and high loads performed with and without achieving muscle failure on muscle strength and hypertrophy. Twenty-five untrained men participated in the 8-week study. Each lower limb was allocated to 1 of 4 unilateral knee extension protocols: repetitions to failure with low load (LL-RF; ∼34.4 repetitions); repetitions to failure with high load (HL-RF; ∼12.4 repetitions); repetitions not to failure with low load (LL-RNF; ∼19.6 repetitions); and repetitions not to failure with high load (HL-RNF; ∼6.7 repetitions). All conditions performed 3 sets with total training volume equated between conditions. The HL-RF and HL-RNF protocols used a load corresponding to 80% 1 repetition maximum (RM), while LL-RF and LL-RNF trained at 30% 1RM. Muscle strength (1RM) and quadriceps cross-sectional area (CSA) were assessed before and after intervention. Results showed that 1RM changes were significantly higher for HL-RF (33.8%, effect size [ES]: 1.24) and HL-RNF (33.4%, ES: 1.25) in the post-test when compared with the LL-RF and LL-RNF protocols (17.7%, ES: 0.82 and 15.8%, ES: 0.89, respectively). Quadriceps CSA increased significantly for HL-RF (8.1%, ES: 0.57), HL-RNF (7.7%, ES: 0.60), and LL-RF (7.8%, ES: 0.45), whereas no significant changes were observed in the LL-RNF (2.8%, ES: 0.15). We conclude that when training with low loads, training with a high level of effort seems to have greater importance than total training volume in the accretion of muscle mass, whereas for high load training, muscle failure does not promote any additional benefits. Consistent with previous research, muscle strength gains are superior when using heavier loads.


Asunto(s)
Entrenamiento de Fuerza , Humanos , Hipertrofia , Masculino , Fuerza Muscular , Músculo Esquelético , Músculo Cuádriceps
2.
J Strength Cond Res ; 36(9): 2410-2416, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33306591

RESUMEN

ABSTRACT: Teixeira, EL, Painelli, VdS, Schoenfeld, BJ, Silva-Batista, C, Longo, AR, Aihara, AY, Cardoso, FN, Peres, BdA, and Tricoli, V. Perceptual and neuromuscular responses adapt similarly between high-load resistance training and low-load resistance training with blood flow restriction. J Strength Cond Res 36(9): 2410-2416, 2022-This study compared the effects of 8 weeks of low-load resistance training with blood flow restriction (LL-BFR) and high-load resistance training (HL-RT) on perceptual responses (rating of perceived exertion [RPE] and pain), quadriceps cross-sectional area (QCSA), and muscle strength (1 repetition maximum [RM]). Sixteen physically active men trained twice per week, for 8 weeks. One leg performed LL-BFR (3 sets of 15 repetitions, 20% 1RM), whereas the contralateral leg performed HL-RT (3 sets of 8 repetitions, 70% 1RM). Rating of perceived exertion and pain were evaluated immediately after the first and last training sessions, whereas QCSA and 1RM were assessed at baseline and after training. Rating of perceived exertion was significantly lower (6.8 ± 1.1 vs. 8.1 ± 0.8, p = 0.001) and pain significantly higher (7.1 ± 1.2 vs. 5.8 ± 1.8, p = 0.02) for LL-BFR than that for HL-RT before training. Significant reductions in RPE and pain were shown for both protocols after training (both p < 0.0001), although no between-protocol differences were shown in absolute changes ( p = 0.10 and p = 0.48, respectively). Both LL-BFR and HL-RT were similarly effective in increasing QCSA (7.0 ± 3.8% and 6.3 ± 4.1%, respectively; both p < 0.0001) and 1RM (6.9 ± 4.1% and 13.7 ± 5.9%, respectively; both P < 0.0001), although absolute changes for 1RM in HL-RT were greater than LL-BFR ( p = 0.001). In conclusion, LL-BFR produces lower RPE values and a higher pain perception than HL-RT. However, consistent application of these approaches result in chronic adaptations so that there are no differences in perceptual responses over the course of time. In addition, muscle strength is optimized with HL-RT despite similar increases in muscle hypertrophy between conditions.


Asunto(s)
Entrenamiento de Fuerza , Humanos , Masculino , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Dolor , Músculo Cuádriceps/fisiología , Flujo Sanguíneo Regional/fisiología , Entrenamiento de Fuerza/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA