Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Res Toxicol ; 27(6): 1019-29, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24801980

RESUMEN

Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA-protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Desoxiguanosina/química , Lisina/química , Piruvaldehído/química , Estructura Molecular , Estereoisomerismo
2.
Org Biomol Chem ; 9(6): 1960-71, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21258716

RESUMEN

2,3-Epoxy-4-hydroxynonanal (EHN) is a potential product of lipid peroxidation that gives rise to genotoxic etheno adducts. We have synthesized all four stereoisomers of EHN and individually reacted them with 2'-deoxyguanosine. In addition to 1,N(2)-etheno-2'-deoxyguanosine, 12 stereoisomeric products were isolated and characterized by (1)H NMR and circular dichroism spectroscopy. The stereochemical assignments were consistent with selective NOE spectra, vicinal coupling constants, and molecular mechanics calculations. Reversed-phase HPLC conditions were developed that could separate most of the adduct mixture.


Asunto(s)
Aldehídos/síntesis química , Desoxiguanosina/química , Compuestos Epoxi/síntesis química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Estereoisomerismo
3.
Chem Res Toxicol ; 23(8): 1330-41, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20578729

RESUMEN

Oligonucleotides were synthesized containing the 7-(2-oxoheptyl)-etheno-dGuo adduct, which is derived from the reaction of dGuo and the lipid peroxidation product 4-oxo-2-nonenal. The in vitro replication of 7-(2-oxoheptyl)-etheno-dGuo by the model Y-family polymerase Sulfolobus solfataricus P2 DNA Polymerase IV (Dpo4) was examined in two sequences. The extension products were sequenced using an improved LC-ESI-MS/MS protocol developed in our laboratories, and the results were compared to that of the 1,N(2)-etheno-dGuo adduct in the same sequence contexts. Both etheno adducts were highly miscoding when situated in 5'-TXG-3' local sequence contexts with <4% of the extension products being derived from error-free bypass. The major extension products resulted from the misinsertion of Ade opposite the adduct and a one-base deletion. The major extension products from replication of the etheno lesions in a 5'-CXG-3' local sequence context were the result of misinsertion of Ade, a one-base deletion, and error-free bypass. Other minor extension products were also identified. The 7-(2-oxoheptyl)-etheno-dGuo lesion resulted in a larger frequency of misinsertion of Ade, whereas the 1,N(2)-etheno-dGuo gave more of the one-base deletion product. Conformational studies of duplex DNA containing the 7-(2-oxoheptyl)-etheno-dGuo in a 5'-TXG-3' sequence context by NMR indicated the presence of a pH-dependent conformational transition, likely involving the glycosyl bond at the adducted guanosine; the pK(a) for this transition was lower than that observed for the 1,N(2)-epsilon-dGuo lesion. However, the 7-(2-oxoheptyl)-etheno-dGuo lesion, the complementary Cyt, and both flanking base pairs remained disordered at all pH values, which is attributed to the presence of the hydrophobic heptyl group of the 7-(2-oxoheptyl)-etheno-dGuo lesion. The altered pK(a) value and the structural disorder at the 7-(2-oxoheptyl)-etheno-dGuo lesion site, as compared to the same sequence containing the 1,N(2)-etheno-dGuo, may contribute to higher frequency of misinsertion of Ade.


Asunto(s)
ADN Polimerasa beta/metabolismo , Desoxiadenosinas/metabolismo , Guanina/análogos & derivados , Oligonucleótidos/biosíntesis , Oligonucleótidos/química , Sulfolobus solfataricus/enzimología , Cromatografía Líquida de Alta Presión , Guanina/química , Guanina/metabolismo , Estructura Molecular , Oligonucleótidos/metabolismo , Espectrometría de Masa por Ionización de Electrospray
4.
Biochemistry ; 48(4): 800-9, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19132922

RESUMEN

Non-invasive strategies for the analysis of endogenous DNA damage are of interest for the purpose of monitoring genomic exposure to biologically produced chemicals. We have focused our research on the biological processing of DNA adducts and how this may impact the observed products in biological matrixes. Preliminary research has revealed that pyrimidopurinone DNA adducts are subject to enzymatic oxidation in vitro and in vivo and that base adducts are better substrates for oxidation than the corresponding 2'-deoxynucleosides. We tested the possibility that structurally similar exocyclic base adducts may be good candidates for enzymatic oxidation in vitro. We investigated the in vitro oxidation of several endogenously occurring etheno adducts [1,N(2)-epsilon-guanine (1,N(2)-epsilon-Gua), N(2),3-epsilon-Gua, heptanone-1,N(2)-epsilon-Gua, 1,N(6)-epsilon-adenine (1,N(6)-epsilon-Ade), and 3,N(4)-epsilon-cytosine (3,N(4)-epsilon-Cyt)] and their corresponding 2'-deoxynucleosides. Both 1,N(2)-epsilon-Gua and heptanone-1,N(2)-epsilon-Gua were substrates for enzymatic oxidation in rat liver cytosol; heteronuclear NMR experiments revealed that oxidation occurred on the imidazole ring of each substrate. In contrast, the partially or fully saturated pyrimidopurinone analogues [i.e., 5,6-dihydro-M(1)G and 1,N(2)-propanoguanine (PGua)] and their 2'-deoxynucleoside derivatives were not oxidized. The 2'-deoxynucleoside adducts, 1,N(2)-epsilon-dG and 1,N(6)-epsilon-dA, underwent glycolytic cleavage in rat liver cytosol. Together, these data suggest that multiple exocyclic adducts undergo oxidation and glycolytic cleavage in vitro in rat liver cytosol, in some instances in succession. These multiple pathways of biotransformation produce an array of products. Thus, the biotransformation of exocyclic adducts may lead to an additional class of biomarkers suitable for use in animal and human studies.


Asunto(s)
Aductos de ADN/química , Aductos de ADN/metabolismo , Glucólisis/fisiología , Peroxidación de Lípido/fisiología , Nucleósidos de Purina/química , Nucleósidos de Purina/metabolismo , Animales , Bovinos , Reparación del ADN , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Humanos , Estrés Oxidativo/fisiología , Nucleósidos de Pirimidina/química , Nucleósidos de Pirimidina/metabolismo , Ratas
5.
Chem Res Toxicol ; 20(11): 1685-92, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17907786

RESUMEN

Background levels of etheno adducts have been attributed to the reaction of DNA with 2,3-epoxyaldehydes, a proposed product of lipid peroxidation. We have examined the reaction of (2R,3S)-epoxyhexanal with dGuo to give 7-(1S-hydroxybutyl)-1,N(2)-etheno-dGuo. We observed that the stereochemistry of the side chain scrambled over time. This process provided insight into the mechanism for the formation of 1,N(2)-etheno-dGuo from 4,5-epoxy-2-decenal [Lee, S. H., et al.(2002) Chem. Res. Toxicol. 15, 300-304]. The mechanistic proposal predicts that 2-octenal is a by-product of the reaction. The reaction of 4,5-epoxy-2-decenal was reinvestigated, and the 2-octenal adduct of dGuo was identified as a product of this reaction in support of the mechanistic proposal. Also observed are products that appear to be derived from 2,3-epoxyoctanal, which can be formed through Schiff base formation of 4,5-epoxy-2-decenal with the dGuo followed by hydration of the double bond and retro-aldol reaction.


Asunto(s)
Aldehídos/química , Aductos de ADN/síntesis química , Desoxiadenosinas/síntesis química , Compuestos Epoxi/química , Peroxidación de Lípido , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA