Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
PLoS Biol ; 17(5): e3000256, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31059510

RESUMEN

Honey bees are experts at refuting societal norms. Their matriarchal hives are headed by queens, backed by an all-female workforce, and males die soon after copulation. But the biochemical basis of how these distinct castes and sexes (queens, workers, and drones) arise is poorly understood, partly due to a lack of efficient tools for genetic manipulation. Now, Roth and colleagues have used clustered regularly interspaced short palindromic repeats (CRISPR) to knock out two key genes (feminizer and doublesex) that guide sexual development. Their technique yielded remarkably low rates of genetic mosaicism and offers a promising tool for engineering and phenotyping bees for diverse applications.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Conducta Sexual Animal , Animales , Abejas , Femenino , Técnicas de Inactivación de Genes , Masculino , Fenotipo
2.
J Invertebr Pathol ; 186: 107688, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34728218

RESUMEN

Nosema disease is one factor that can cause colony decline in honeybees (Apis mellifera L.) worldwide. Nosema ceranae has outcompeted Nosema apis in the Western honeybee (A. mellifera) which is its original host. Fumagilin is an effective antibiotic treatment to control Nosema infection but currently it is forbidden in many countries. In this study, 12 plant extracts were evaluated for their toxicity to adult bees and antimicrosporidian activity under laboratory and field conditions. N. ceranae-infected adult bees were fed ad libitum with 50% sucrose solution containing 1% and 5% (w/v) of each plant extract. Bee mortality in N. ceranae-infected groups fed with plant extracts was higher than that in the control group treated with fumagilin. The results demonstrated that 9 of 12 extracts had high antimicrosporidian activity against N. ceranae and their efficacies were comparable to fumagilin. Spore reduction in infected bees was 4-6 fold less after extract treatment. Following laboratory screening, Annona squamosa, Ocimum basilicum, Psidium guajava and Syzygium jambos were tested in honeybee colonies. Plant extracts of 2% concentration (w/v) inhibited the development of Nosema spores after 30 days of treatment. At the end of experiment (90 days), spores in the plant extract treated groups were lower than in group treated with fumagilin but there was no significant difference. Although, extracts tested in this study showed high toxicity to bee in laboratory cages, they did not show negative affects on bees under whole colony conditions. Therefore, the effectiveness of plant extracts tested in this study was notable and warrants further study as potential Nosema control agents in honey bees. Plant extracts would offer a non-antibiotic alternative for Nosema control and help reduce the overuse of antibiotics in livestock.


Asunto(s)
Abejas/microbiología , Fungicidas Industriales/farmacología , Nosema/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Fungicidas Industriales/química , Nosema/fisiología , Extractos Vegetales/química
3.
BMC Genomics ; 21(1): 571, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32819278

RESUMEN

BACKGROUND: Queen failure is a persistent problem in beekeeping operations, but in the absence of overt symptoms it is often difficult, if not impossible, to ascertain the root cause. Stressors like heat-shock, cold-shock, and sublethal pesticide exposure can reduce stored sperm viability and lead to cryptic queen failure. Previously, we suggested candidate protein markers indicating heat-shock in queens. Here, we further investigate these heat-shock markers and test new stressors to identify additional candidate protein markers. RESULTS: We found that heat-shocking queens for upwards of 1 h at 40 °C was necessary to induce significant changes in the two strongest candidate heat-shock markers, and that relative humidity significantly influenced the degree of activation. In blind heat-shock experiments, we tested the efficiency of these markers at assigning queens to their respective treatment groups and found that one marker was sufficient to correctly assign queens 75% of the time. Finally, we compared cold-shocked queens at 4 °C and pesticide-exposed queens to controls to identify candidate markers for these additional stressors, and compared relative abundances of all markers to queens designated as 'healthy' and 'failing' by beekeepers. Queens that failed in the field had higher expression of both heat-shock and pesticide protein markers, but not cold-shock markers. CONCLUSIONS: This work offers some of the first steps towards developing molecular diagnostic tools to aid in determining cryptic causes of queen failure. Further work will be necessary to determine how long after the stress event a marker's expression remains elevated, and how accurate these markers will be for field diagnoses.


Asunto(s)
Plaguicidas , Abejas , Biomarcadores
4.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31003985

RESUMEN

Paenibacillus larvae, the causative agent of American foulbrood (AFB), is the primary bacterial pathogen affecting honeybees and beekeeping. The main methods for controlling AFB are incineration of diseased colonies or prophylactic antibiotic treatment (e.g., with tylosin), neither of which is fully satisfactory. The search for superior means for controlling AFB has led to an increased interest in the natural relationships between the honeybee-pathogenic and mutualistic microorganisms and, in particular, the antagonistic effects of honeybee-specific lactic acid bacteria (hbs-LAB) against P. larvae These effects have been demonstrated only on individual larvae in controlled laboratory bioassays. Here we investigated whether supplemental administration of hbs-LAB had a similar beneficial effect on P. larvae infection at colony level. We compared experimentally AFB-infected colonies treated with hbs-LAB supplements to untreated and tylosin-treated colonies and recorded AFB symptoms, bacterial spore levels, and two measures of colony health. To account for the complexity of a bee colony, we focused on (Bayesian) probabilities and magnitudes of effect sizes. Tylosin reduced AFB disease symptoms but also had a negative effect on colony strength. The tylosin treatment did not, however, affect P. larvae spore levels and might therefore "mask" the potential for disease. hbs-LAB tended to reduce brood size in the short term but was unlikely to affect AFB symptoms or spores. These results do not contradict demonstrated antagonistic effects of hbs-LAB against P. larvae at the individual bee level but rather suggest that supplementary administration of hbs-LAB may not be the most effective way to harness these beneficial effects at the colony level.IMPORTANCE The previously demonstrated antagonistic effects of honeybee-derived bacterial microbiota on the infectivity and pathogenicity of P. larvae in laboratory bioassays have identified a possible new approach to AFB control. However, honeybee colonies are complex superorganisms where social immune defenses play a major role in resistance against disease at the colony level. Few studies have investigated the effect of beneficial microorganisms on bee diseases at the colony level. Effects observed at the individual bee level do not necessarily translate into similar effects at the colony level. This study partially fills this gap by showing that, unlike at the individual level, hbs-LAB supplements did not affect AFB symptoms at the colony level. The inference is that the mechanisms regulating the honeybee microbial dynamics within a colony are too strong to manipulate positively through supplemental feeding of live hbs-LAB and that new potential remedies identified through laboratory research have to be tested thoroughly in situ, in colonies.


Asunto(s)
Antibiosis , Abejas/microbiología , Lactobacillales/fisiología , Paenibacillus larvae/fisiología , Animales , Antibacterianos/farmacología , Abejas/efectos de los fármacos , Abejas/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/microbiología , Paenibacillus larvae/efectos de los fármacos , Especificidad de la Especie , Tilosina/farmacología
5.
Proc Biol Sci ; 283(1828)2016 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-27075256

RESUMEN

At present, there is substantive evidence that the nutritional content of agriculturally important food crops will decrease in response to rising levels of atmospheric carbon dioxide, Ca However, whether Ca-induced declines in nutritional quality are also occurring for pollinator food sources is unknown. Flowering late in the season, goldenrod (Solidago spp.) pollen is a widely available autumnal food source commonly acknowledged by apiarists to be essential to native bee (e.g. Bombus spp.) and honeybee (Apis mellifera) health and winter survival. Using floral collections obtained from the Smithsonian Natural History Museum, we quantified Ca-induced temporal changes in pollen protein concentration of Canada goldenrod (Solidago canadensis), the most wide spread Solidago taxon, from hundreds of samples collected throughout the USA and southern Canada over the period 1842-2014 (i.e. a Ca from approx. 280 to 398 ppm). In addition, we conducted a 2 year in situtrial of S. Canadensis populations grown along a continuous Ca gradient from approximately 280 to 500 ppm. The historical data indicated a strong significant correlation between recent increases in Ca and reductions in pollen protein concentration (r(2)= 0.81). Experimental data confirmed this decrease in pollen protein concentration, and indicated that it would be ongoing as Ca continues to rise in the near term, i.e. to 500 ppm (r(2)= 0.88). While additional data are needed to quantify the subsequent effects of reduced protein concentration for Canada goldenrod on bee health and population stability, these results are the first to indicate that increasing Ca can reduce protein content of a floral pollen source widely used by North American bees.


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/química , Abejas/fisiología , Dióxido de Carbono/análisis , Solidago/fisiología , Animales , Cambio Climático , Flores/fisiología , Indiana , Maryland , Polen/química , Polinización
6.
PLoS Pathog ; 10(7): e1004261, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25079600

RESUMEN

Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV-host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide.


Asunto(s)
Abejas/virología , Colapso de Colonias/epidemiología , Dicistroviridae/patogenicidad , Virosis/epidemiología , Virosis/patología , Animales , Biomarcadores/metabolismo , Colapso de Colonias/genética , Colapso de Colonias/virología , Dicistroviridae/genética , Perfilación de la Expresión Génica , Genoma Viral , Interacciones Huésped-Patógeno , Hibridación in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Interferente Pequeño/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virosis/genética , Virosis/virología
7.
Naturwissenschaften ; 102(9-10): 49, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26286322

RESUMEN

This study aimed to investigate the poorly documented reproductive behaviour of the small hive beetle, Aethina tumida (Nitidulidae), a honey bee (Apis mellifera) parasite. We described the mating behaviour in detail and tested the hypothesis that beetle aggregation plays a vital role in mating in this species. Gender preference was examined in the context of age-dependency and possible chemical communication. Beetles started mating at a high frequency 18 days after emergence from the soil but only if they were aggregated (p < 0.001); mating was infrequent when beetles were paired. Males in aggregation also tried to copulate with males and only copulated more frequently with females at 18 days after emergence from soil (p < 0.001) in contrast to newly emerged, 7-day-old and 60-day-old beetles. Males and females spent more time in social contact with the opposite sex (p < 0.01) when they were 18 days old in contrast to 7-day-old beetles. Filter papers which had been in contact with 21-day-old beetles were highly attractive to similar-aged beetles of the opposite sex (p < 0.01). This suggests that chemical substances produced by the beetles themselves play a role in mating. Mating behaviour was characterised by a short pre-copulation courtship and female aggression towards other females and copulating couples. Both behaviours may be indicative of cryptic female choice. Delayed onset of reproductive behaviour is typical of many polygamous species, whilst the indispensability of aggregation for onset of sexual behaviour seems to be a feature unique to A. tumida. Both strategies support mass reproduction in this parasitic species, enabling A. tumida to overcome its honey bee host colony, and are probably triggered by chemotactic cues..


Asunto(s)
Escarabajos/fisiología , Conducta Sexual Animal/fisiología , Factores de Edad , Animales , Femenino , Masculino
9.
PLoS One ; 19(2): e0297980, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38329992

RESUMEN

The ectoparasitic mite, Varroa destructor is the most serious widespread pest of managed honeybees (Apis mellifera). Several acaricide products, which include essential oils, have been proposed for mite control. In this study, we aimed to apply atmospheric-pressure plasma to modify a cardboard piece surface in order to prolong the delivery of essential oils for controlling Varroa in honeybee colonies. Absorption capacity, release rates and evaporation rates of essential oils were determined. Cardboard piece showed a higher absorption capacity of cinnamon compared to citronella and clove. Surface modification of cardboard pieces using argon plasma at different gas flow rates and treatment durations, significantly affected the absorption of clove oil. Additionally, the release rate of cinnamon, citronella and clove was significantly enhanced after argon plasma treatments. Evaporation of cinnamon was dramatically increased by plasma treatment at 6-h of incubation. The highest evaporation rate was obtained by plasma-treated cardboard piece at a gas flow rate of 0.5 Lpm for 60 s (0.2175 ± 0.0148 µl/g•h). Efficiency of plasma-treated cardboard piece, impregnated with essential oils, was also investigated for Varroa control in honeybee colonies. In the first experiment, formic acid 65% (v/v) showed the highest efficiency of 90.60% and 81.59% with the percent of mite infestation was 0.23 ± 0.13% and 0.47 ± 0.19% at 21 and 35 days, respectively after treatment. The efficacy of cardamon oil (5% (v/v)) delivered using plasma-treated cardboard pieces was 57.71% (0.70 ± 0.16% of mite infestation) at day 21 of experiment. However, the delivery of cardamon oil at the concentration of 1% and 5% (v/v) by untreated cardboard piece had 16.93% and 24.05% of efficacy to control mites. In the 2nd experiment, the application of plasma-treated cardboard pieces impregnated with 5% (v/v) clove oil induced a 38.10% reduction in the population of Varroa mites followed by 5% (v/v) of cardamon with 30% efficiency. Although, the infestation rate of Varroa in colonies was not significant different between treatments, essential oils delivered using plasma-treated cardboard pieces tended to decrease Varroa population in the treated colonies. Hence, atmospheric-pressure plasma for the modification of other materials, should be further investigated to provide alternative control treatment applications against honeybee mites.


Asunto(s)
Acaricidas , Lamiaceae , Aceites Volátiles , Gases em Plasma , Escabiosis , Varroidae , Abejas , Animales , Acaricidas/farmacología , Aceites Volátiles/farmacología , Aceite de Clavo , Gases em Plasma/farmacología
10.
Sci Rep ; 14(1): 1831, 2024 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-38246935

RESUMEN

Ascosphaera apis is a worldwide pathogenic fungi of honeybees that can cause a decline in bee populations. In this study, we investigated the antifungal activity of non-thermal plasma on fungal growth. Spore inactivation after exposure to gas plasma by liquid phase and plasma activated water (PAW) and pathogenicity of A. apis in vivo were also examined. The results demonstrated that the mycelial growth of fungi was completely inhibited after argon plasma treatment. Both gas plasma and PAW exposures resulted in a significant decrease of A. apis spore numbers, maximum reduction of 1.71 and 3.18-fold, respectively. Germinated fungal spores on potato dextrose agar were also reduced after plasma treatment. SEM analysis revealed a disruption in the morphological structure of the fungal spores. The pathogenicity of A. apis on honeybee larvae was decreased after spores treated by gas plasma and PAW with a disease inhibition of 63.61 ± 7.28% and 58.27 ± 5.87%, respectively after 7 days of cultivation. Chalkbrood in honey bees have limited control options and our findings are encouraging. Here, we demonstrate a possible alternative control method using non-thermal plasma for chalkbrood disease in honeybees.


Asunto(s)
Onygenales , Abejas , Animales , Larva , Antifúngicos , Argón , Esporas Fúngicas , Agua
11.
BMC Genomics ; 14: 451, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23829473

RESUMEN

BACKGROUND: The microsporidia parasite Nosema contributes to the steep global decline of honey bees that are critical pollinators of food crops. There are two species of Nosema that have been found to infect honey bees, Nosema apis and N. ceranae. Genome sequencing of N. apis and comparative genome analysis with N. ceranae, a fully sequenced microsporidia species, reveal novel insights into host-parasite interactions underlying the parasite infections. RESULTS: We applied the whole-genome shotgun sequencing approach to sequence and assemble the genome of N. apis which has an estimated size of 8.5 Mbp. We predicted 2,771 protein- coding genes and predicted the function of each putative protein using the Gene Ontology. The comparative genomic analysis led to identification of 1,356 orthologs that are conserved between the two Nosema species and genes that are unique characteristics of the individual species, thereby providing a list of virulence factors and new genetic tools for studying host-parasite interactions. We also identified a highly abundant motif in the upstream promoter regions of N. apis genes. This motif is also conserved in N. ceranae and other microsporidia species and likely plays a role in gene regulation across the microsporidia. CONCLUSIONS: The availability of the N. apis genome sequence is a significant addition to the rapidly expanding body of microsprodian genomic data which has been improving our understanding of eukaryotic genome diversity and evolution in a broad sense. The predicted virulent genes and transcriptional regulatory elements are potential targets for innovative therapeutics to break down the life cycle of the parasite.


Asunto(s)
Abejas/genética , Abejas/microbiología , Genómica , Interacciones Huésped-Patógeno/genética , Nosema/genética , Nosema/fisiología , Animales , Secuencia Conservada , Proteínas Fúngicas/genética , Proteínas de Insectos/genética , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie
12.
J Econ Entomol ; 106(4): 1535-44, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24020263

RESUMEN

Parasitic Tropilaelaps (Delfinado and Baker) mites are a damaging pest of European honey bees (Apis mellifera L.) in Asia. These mites represent a significant threat if introduced to other regions of the world, warranting implementation of Tropilaelaps mite surveillance in uninfested regions. Current Tropilaelaps mite-detection methods are unsuitable for efficient large scale screening. We developed and tested a new bump technique that consists of firmly rapping a honey bee brood frame over a collecting pan. Our method was easier to implement than current detection tests, reduced time spent in each apiary, and minimized brood destruction. This feasibility increase overcomes the test's decreased rate of detecting infested colonies (sensitivity; 36.3% for the bump test, 54.2% and 56.7% for the two most sensitive methods currently used in Asia). Considering this sensitivity, we suggest that screening programs sample seven colonies per apiary (independent of apiary size) and 312 randomly selected apiaries in a region to be 95% sure of detecting an incipient Tropilaelaps mite invasion. Further analyses counter the currently held view that Tropilaelaps mites prefer drone bee brood cells. Tropilaelaps mite infestation rate was 3.5 +/- 0.9% in drone brood and 5.7 +/- 0.6% in worker brood. We propose the bump test as a standard tool for monitoring of Tropilaelaps mite presence in regions thought to be free from infestation. However, regulators may favor the sensitivity of the Drop test (collecting mites that fall to the bottom of a hive on sticky boards) over the less time-intensive Bump test.


Asunto(s)
Ácaros y Garrapatas/fisiología , Apicultura/métodos , Abejas/parasitología , Control de Ácaros y Garrapatas/métodos , Animales , Abejas/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/parasitología , Densidad de Población , Pupa/crecimiento & desarrollo , Pupa/parasitología , Sensibilidad y Especificidad , Tailandia , Control de Ácaros y Garrapatas/economía
13.
Life (Basel) ; 13(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36836795

RESUMEN

Widespread parasites, along with emerging threats, globalization, and climate change, have greatly affected honey bees' health, leading to colony losses worldwide. In this study, we investigated the detection of biotic stressors (i.e., viruses, microsporidian, bacteria, and fungi) in Apis cerana by surveying the colonies across different regions of Thailand (Chiang Mai in the north, Nong Khai and Khon Kaen in the northeast, and Chumphon and Surat Thani in the south, in addition to the Samui and Pha-ngan islands). In this study, we detected ABPV, BQCV, LSV, and Nosema ceranae in A. cerana samples through RT-PCR. ABPV was only detected from the samples of Chiang Mai, whereas we found BQCV only in those from Chumphon. LSV was detected only in the samples from the Samui and Pha-ngan islands, where historically no managed bees are known. Nosema ceranae was found in all of the regions except for Nong Khai and Khon Kaen in northeastern Thailand. Paenibacillus larvae and Ascosphaera apis were not detected in any of the A. cerana samples in this survey. The phylogenetic tree analysis of the pathogens provided insights into the pathogens' movements and their distribution ranges across different landscapes, indicating the flow of pathogens among the honey bees. Here, we describe the presence of emerging pathogens in the Asian honey bee as a valuable step in our understanding of these pathogens in terms of the decline in eastern honey bee populations.

14.
PLoS Pathog ; 6(12): e1001160, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203478

RESUMEN

The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control.


Asunto(s)
Abejas/virología , Colapso de Colonias/prevención & control , Dicistroviridae/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Animales , Apicultura/métodos , Abejas/genética , Clima , Colapso de Colonias/virología , Dicistroviridae/patogenicidad , Florida , Pennsylvania
15.
Naturwissenschaften ; 99(2): 153-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22246149

RESUMEN

Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.


Asunto(s)
Abejas/microbiología , Imidazoles/farmacología , Nitrocompuestos/farmacología , Nosema/efectos de los fármacos , Nosema/fisiología , Plaguicidas/farmacología , Animales , Recuento de Colonia Microbiana , Neonicotinoides
16.
PLoS Pathog ; 5(6): e1000466, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19503607

RESUMEN

Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T) and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposable-element proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee-Nosema interactions.


Asunto(s)
Abejas/microbiología , Genes Fúngicos , Genoma Fúngico , Nosema/genética , Animales , Secuencia de Bases , Codón/genética , Codón/metabolismo , Secuencia Conservada , Interpretación Estadística de Datos , Encephalitozoon cuniculi/genética , Modelos Genéticos , Datos de Secuencia Molecular , Nosema/patogenicidad , Elementos Reguladores de la Transcripción/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Esporas Fúngicas/genética
17.
J Invertebr Pathol ; 107(3): 229-33, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21600213

RESUMEN

Nosema ceranae was found to infect four different host species including the European honeybee (A. mellifera) and the Asian honeybees (Apis florea, A. cerana and Apis dorsata) collected from apiaries and forests in Northern Thailand. Significant sequence variation in the polar tube protein (PTP1) gene of N. ceranae was observed with N. ceranae isolates from A. mellifera and A. cerana, they clustered into the same phylogenetic lineage. N. ceranae isolates from A. dorsata and A. florea were grouped into two other distinct clades. This study provides the first elucidation of a genetic relationship among N. ceranae strains isolated from different host species and demonstrates that the N. ceranae PTP gene was shown to be a suitable and reliable marker in revealing genetic relationships within species.


Asunto(s)
Abejas/microbiología , Nosema/genética , Filogenia , Animales , Genes Fúngicos , Marcadores Genéticos , Nosema/clasificación , Nosema/aislamiento & purificación , Tailandia
18.
Commun Biol ; 4(1): 48, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420325

RESUMEN

Queens of many social hymenoptera keep sperm alive within their specialized storage organ, the spermatheca, for years, defying the typical trade-off between lifespan and reproduction. However, whether honey bee (Apis mellifera) queens experience a trade-off between reproduction and immunity is unknown, and the biochemical processes underlying sperm viability are poorly understood. Here, we survey quality metrics and viral loads of honey bee queens from nine genetic sources. Queens rated as 'failed' by beekeepers had lower sperm viability, fewer sperm, and higher levels of sacbrood virus and black queen cell virus. Quantitative proteomics on N = 123 spermathecal fluid samples shows, after accounting for sperm count, health status, and apiary effects, five spermathecal fluid proteins significantly correlating with sperm viability: odorant binding protein (OBP)14, lysozyme, serpin 88Ea, artichoke, and heat-shock protein (HSP)10. The significant negative correlation of lysozyme-a conserved immune effector-with sperm viability is consistent with a reproduction vs. immunity trade-off in honey bee queens.


Asunto(s)
Abejas/inmunología , Proteoma , Reproducción , Espermatozoides , Animales , Abejas/metabolismo , Abejas/virología , Supervivencia Celular , Femenino , Proteínas de Insectos/metabolismo , Masculino , Serpinas/metabolismo
19.
Braz J Microbiol ; 52(4): 2097-2115, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34264502

RESUMEN

Honey bee colony losses worldwide call for a more in-depth understanding of the pathogenic and mutualistic components of the honey bee microbiota and their relation with the environment. In this descriptive study, we characterized the yeast and bacterial communities that arise from six substrates associated with honey bees: corbicular pollen, beebread, hive debris, intestinal contents, body surface of nurses and forager bees, comparing two different landscapes, Minas Gerais, Brazil and Maryland, United States. The sampling of five hives in Brazil and four in the USA yielded 217 yeast and 284 bacterial isolates. Whereas the yeast community, accounted for 47 species from 29 genera, was dominated in Brazil by Aureobasidium sp. and Candida orthopsilosis, the major yeast recovered from the USA was Debaryomyces hansenii. The bacterial community was more diverse, encompassing 65 species distributed across 31 genera. Overall, most isolates belonged to Firmicutes, genus Bacillus. Among LAB, species from Lactobacillus were the most prevalent. Cluster analysis evidenced high structuration of the microbial communities, with two distinguished microbial groups between Brazil and the United States. In general, the higher difference among sites and substrates were dependents on the turnover effect (~ 93% of the beta diversity), with a more pronounced effect of nestedness (~ 28%) observed from Brazil microbiota change. The relative abundance of yeasts and bacteria also showed the dissimilarity of the microbial communities between both environments. These results provide a comprehensive view of microorganisms associated with A. mellifera, highlighting the importance of the environment in the establishment of the microbiota associated with honey bees.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Abejas , Microbiota , Levaduras , Animales , Bacterias/genética , Abejas/microbiología , Brasil , Microbiota/fisiología , Polen/microbiología , Simbiosis , Estados Unidos , Levaduras/fisiología
20.
Environ Pollut ; 279: 116566, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33839524

RESUMEN

Honey bees Apis mellifera forage in a wide radius around their colony, bringing back contaminated food resources that can function as terrestrial bioindicators of environmental pesticide exposure. Evaluating pesticide exposure risk to pollinators is an ongoing problem. Here we apply five metrics for pesticide exposure risk (prevalence, diversity, concentration, significant pesticide prevalence, and hazard quotient (HQ)) to a nation-wide field study of honey bees, Apis mellifera in the United States. We examined samples from 1055 apiaries over seven years for 218 different pesticide residues and metabolites, determining that bees were exposed to 120 different pesticide products with a mean of 2.78 per sample. Pesticides in pollen were highly prevalent and variable across states. While pesticide diversity increased over time, most detections occurred at levels predicted to be of low risk to colonies. Varroacides contributed most to concentration, followed by fungicides, while insecticides contributed most to diversity above a toxicity threshold. High risk samples contained one of 12 different insecticides or varroacides. Exposures predicted to be low-risk were nevertheless associated with colony morbidity, and low-level fungicide exposures were tied to queen loss, Nosema infection, and brood diseases.


Asunto(s)
Insecticidas , Nosema , Residuos de Plaguicidas , Plaguicidas , Animales , Abejas , Insecticidas/análisis , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Polen/química , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA