Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36980479

RESUMEN

Acid-base disorders occur when the body's normal pH is out of balance. They can be caused by problems with kidney or respiratory function or by an excess of acids or bases that the body cannot properly eliminate. Acid-base and potassium imbalances are mechanistically linked because acid-base imbalances can alter the transport of potassium. Both acid-base and potassium imbalances are common in critically ill patients. This study investigated machine learning models for predicting the occurrence of acid-base and potassium imbalances in intensive care patients. We used an institutional dataset of 1089 patients with 87 variables, including vital signs, general appearance, and laboratory results. Gradient boosting (GB) was able to predict nine clinical conditions related to acid-base and potassium imbalances: mortality (AUROC = 0.9822), hypocapnia (AUROC = 0.7524), hypercapnia (AUROC = 0.8228), hypokalemia (AUROC = 0.9191), hyperkalemia (AUROC = 0.9565), respiratory acidosis (AUROC = 0.8125), respiratory alkalosis (AUROC = 0.7685), metabolic acidosis (AUROC = 0.8682), and metabolic alkalosis (AUROC = 0.8284). Some predictions remained relatively robust even when the prediction window was increased. Additionally, the decision-making process was made more interpretable and transparent through the use of SHAP analysis. Overall, the results suggest that machine learning could be a useful tool to gain insight into the condition of intensive care patients and assist in the management of acid-base and potassium imbalances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA