Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Nature ; 607(7917): 111-118, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732736

RESUMEN

Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters ('Candidatus Eudoremicrobiaceae') that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments.


Asunto(s)
Vías Biosintéticas , Microbiota , Océanos y Mares , Bacterias/clasificación , Bacterias/genética , Vías Biosintéticas/genética , Genómica , Microbiota/genética , Familia de Multigenes/genética , Filogenia
2.
Nature ; 580(7803): 413-417, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296173

RESUMEN

Intracellular replication of the deadly pathogen Mycobacterium tuberculosis relies on the production of small organic molecules called siderophores that scavenge iron from host proteins1. M. tuberculosis produces two classes of siderophore, lipid-bound mycobactin and water-soluble carboxymycobactin2,3. Functional studies have revealed that iron-loaded carboxymycobactin is imported into the cytoplasm by the ATP binding cassette (ABC) transporter IrtAB4, which features an additional cytoplasmic siderophore interaction domain5. However, the predicted ABC exporter fold of IrtAB is seemingly contradictory to its import function. Here we show that membrane-reconstituted IrtAB is sufficient to import mycobactins, which are then reduced by the siderophore interaction domain to facilitate iron release. Structure determination by X-ray crystallography and cryo-electron microscopy not only confirms that IrtAB has an ABC exporter fold, but also reveals structural peculiarities at the transmembrane region of IrtAB that result in a partially collapsed inward-facing substrate-binding cavity. The siderophore interaction domain is positioned in close proximity to the inner membrane leaflet, enabling the reduction of membrane-inserted mycobactin. Enzymatic ATPase activity and in vivo growth assays show that IrtAB has a preference for mycobactin over carboxymycobactin as its substrate. Our study provides insights into an unusual ABC exporter that evolved as highly specialized siderophore-import machinery in mycobacteria.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Sideróforos/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
3.
Proc Natl Acad Sci U S A ; 119(13): e2116578119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35316135

RESUMEN

SignificanceThe channel-forming proteusins are bacterial helical peptides that allow permeation of positively charged ions to influence membrane potential and cellular physiology. We biochemically characterize the effect of two critical posttranslational modifications on the secondary structure of the peptide substrate. We determine how a methyl group can be added to the side chains of D-Asn residues in a peptide substrate and show how flanking residues influence selectivity. These studies should foster the development of small-molecule peptide ion channels as therapeutics.


Asunto(s)
Amidas , Citotoxinas , Metilación , Péptidos/química , Procesamiento Proteico-Postraduccional
4.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35027450

RESUMEN

Lipopeptides represent a large group of microbial natural products that include important antibacterial and antifungal drugs and some of the most-powerful known biosurfactants. The vast majority of lipopeptides comprise cyclic peptide backbones N-terminally equipped with various fatty acyl moieties. The known compounds of this type are biosynthesized by nonribosomal peptide synthetases, giant enzyme complexes that assemble their products in a non-gene-encoded manner. Here, we report the genome-guided discovery of ribosomally derived, fatty-acylated lipopeptides, termed selidamides. Heterologous reconstitution of three pathways, two from cyanobacteria and one from an arctic, ocean-derived alphaproteobacterium, allowed structural characterization of the probable natural products and suggest that selidamides are widespread over various bacterial phyla. The identified representatives feature cyclic peptide moieties and fatty acyl units attached to (hydroxy)ornithine or lysine side chains by maturases of the GCN5-related N-acetyltransferase superfamily. In contrast to nonribosomal lipopeptides that are usually produced as congener mixtures, the three selidamides are selectively fatty acylated with C10, C12, or C16 fatty acids, respectively. These results highlight the ability of ribosomal pathways to emulate products with diverse, nonribosomal-like features and add to the biocatalytic toolbox for peptide drug improvement and targeted discovery.


Asunto(s)
Lipopéptidos/biosíntesis , Lipopéptidos/química , Ribosomas/metabolismo , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Vías Biosintéticas , Cianobacterias/metabolismo , Péptido Sintasas/metabolismo , Péptidos Cíclicos
5.
J Am Chem Soc ; 146(8): 5550-5559, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38364824

RESUMEN

OspD is a radical S-adenosyl-l-methionine (SAM) peptide epimerase that converts an isoleucine (Ile) and valine (Val) of the OspA substrate to d-amino acids during biosynthesis of the ribosomally synthesized and post-translationally modified peptide (RiPP) natural product landornamide A. OspD is proposed to carry out this reaction via α-carbon (Cα) H-atom abstraction to form a peptidyl Cα radical that is stereospecifically quenched by hydrogen atom transfer (HAT) from a conserved cysteine (Cys). Here we use site-directed mutagenesis, freeze-quench trapping, isotopic labeling, and electron paramagnetic resonance (EPR) spectroscopy to provide new insights into the OspD catalytic mechanism including the direct observation of the substrate peptide Cα radical intermediate. The putative quenching Cys334 was changed to serine to generate an OspD C334S variant impaired in HAT quenching. The reaction of reduced OspD C334S with SAM and OspA freeze-quenched at 15 s exhibits a doublet EPR signal characteristic of a Cα radical coupled to a single ß-H. Using isotopologues of OspA deuterated at either Ile or Val, or both Ile and Val, reveals that the initial Cα radical intermediate forms exclusively on the Ile of OspA. Time-dependent freeze quench coupled with EPR spectroscopy provided evidence for loss of the Ile Cα radical concomitant with gain of a Val Cα radical, directly demonstrating the N-to-C directionality of epimerization by OspD. These results provide direct evidence for the aforementioned OspD-catalyzed peptide epimerization mechanism via a central Cα radical intermediate during RiPP maturation of OspA, a mechanism that may extend to other proteusin peptide epimerases.


Asunto(s)
Metionina , S-Adenosilmetionina , S-Adenosilmetionina/química , Carbono , Péptidos/química , Aminoácidos , Racemetionina , Valina
6.
FEMS Yeast Res ; 242024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38140959

RESUMEN

Pulcherrimin is an iron (III) chelate of pulcherriminic acid that plays a role in antagonistic microbial interactions, iron metabolism, and stress responses. Some bacteria and yeasts produce pulcherriminic acid, but so far, pulcherrimin could not be produced in Saccharomyces cerevisiae. Here, multiple integrations of the Metschnikowia pulcherrima PUL1 and PUL2 genes in the S. cerevisiae genome resulted in red colonies, which indicated pulcherrimin formation. The coloration correlated positively and significantly with the number of PUL1 and PUL2 genes. The presence of pulcherriminic acid was confirmed by mass spectrometry. In vitro competition assays with the plant pathogenic fungus Botrytis caroliana revealed inhibitory activity on conidiation by an engineered, strong pulcherrimin-producing S. cerevisiae strain. We demonstrate that the PUL1 and PUL2 genes from M. pulcherrima, in multiple copies, are sufficient to transfer pulcherrimin production to S. cerevisiae and represent the starting point for engineering and optimizing this biosynthetic pathway in the future.


Asunto(s)
Metschnikowia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Botrytis/genética , Botrytis/metabolismo , Metschnikowia/genética , Metschnikowia/metabolismo , Hierro/metabolismo
7.
Chembiochem ; 24(18): e202300209, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37144248

RESUMEN

Type I fatty acid synthases (FASs) are known from higher eukaryotes and fungi. We report the discovery of FasT, a rare type I FAS from the cyanobacterium Chlorogloea sp. CCALA695. FasT possesses an unusual off-loading domain, which was heterologously expressed in E. coli and found to act as an α-oxoamine synthase (AOS) in vitro. Similar to serine palmitoyltransferases from sphingolipid biosynthesis, the AOS off-loading domain catalyzes a decarboxylative Claisen condensation between l-serine and a fatty acyl thioester. While the AOS domain was strictly specific for l-serine, thioesters with saturated fatty acyl chains of six carbon atoms and longer were tolerated, with the highest activity observed for stearoyl-coenzyme A (C18 ). Our findings suggest a novel route to α-amino ketones via the direct condensation of iteratively produced long-chain fatty acids with l-serine by a FAS with a cis-acting AOS off-loading domain.


Asunto(s)
Escherichia coli , Serina C-Palmitoiltransferasa , Ácidos Grasos , Serina
8.
Proc Natl Acad Sci U S A ; 117(17): 9508-9518, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32291345

RESUMEN

Bacterial specialized metabolites are increasingly recognized as important factors in animal-microbiome interactions: for example, by providing the host with chemical defenses. Even in chemically rich animals, such compounds have been found to originate from individual members of more diverse microbiomes. Here, we identified a remarkable case of a moderately complex microbiome in the sponge host Mycale hentscheli in which multiple symbionts jointly generate chemical diversity. In addition to bacterial pathways for three distinct polyketide families comprising microtubule-inhibiting peloruside drug candidates, mycalamide-type contact poisons, and the eukaryotic translation-inhibiting pateamines, we identified extensive biosynthetic potential distributed among a broad phylogenetic range of bacteria. Biochemical data on one of the orphan pathways suggest a previously unknown member of the rare polytheonamide-type cytotoxin family as its product. Other than supporting a scenario of cooperative symbiosis based on bacterial metabolites, the data provide a rationale for the chemical variability of M. hentscheli and could pave the way toward biotechnological peloruside production. Most bacterial lineages in the compositionally unusual sponge microbiome were not known to synthesize bioactive metabolites, supporting the concept that microbial dark matter harbors diverse producer taxa with as yet unrecognized drug discovery potential.


Asunto(s)
Bacterias/metabolismo , Microbiota/fisiología , Poríferos/microbiología , Animales , Citotoxinas/metabolismo , Genoma Bacteriano , Simbiosis
9.
Angew Chem Int Ed Engl ; 62(34): e202304481, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37216334

RESUMEN

Modular trans-acyltransferase polyketide synthases (trans-AT PKSs) are enzymatic assembly lines that biosynthesize complex polyketide natural products. Relative to their better studied cis-AT counterparts, the trans-AT PKSs introduce remarkable chemical diversity into their polyketide products. A notable example is the lobatamide A PKS, which incorporates a methylated oxime. Here we demonstrate biochemically that this functionality is installed on-line by an unusual oxygenase-containing bimodule. Furthermore, analysis of the oxygenase crystal structure coupled with site-directed mutagenesis allows us to propose a model for catalysis, as well as identifying key protein-protein interactions that support this chemistry. Overall, our work adds oxime-forming machinery to the biomolecular toolbox available for trans-AT PKS engineering, opening the way to introducing such masked aldehyde functionalities into diverse polyketides.


Asunto(s)
Sintasas Poliquetidas , Policétidos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Catálisis
10.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055133

RESUMEN

Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 µM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.


Asunto(s)
Antivirales/farmacología , Herpesvirus Humano 2/fisiología , Micromonospora/química , Péptidos/farmacología , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Chlorocebus aethiops , Citomegalovirus/efectos de los fármacos , Citomegalovirus/fisiología , Prepucio/citología , Prepucio/virología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 2/efectos de los fármacos , Humanos , Masculino , Estructura Molecular , Péptidos/química , Péptidos/aislamiento & purificación , Células Vero , Liberación del Virus/efectos de los fármacos
11.
Angew Chem Int Ed Engl ; 61(29): e202202695, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35481938

RESUMEN

The wide range of moieties installed in ribosomally synthesized and post-translationally modified peptides (RiPPs) suggests largely untapped potential for protein engineering. However, many RiPP maturases recognize target peptide precursors through an N-terminal leader sequence that is challenging to adapt to proteins. We have recently reported a family of enzymes that splice XYG sites in RiPPs to install α-keto-ß-amino acids. Backbone modifications influence diverse protein properties, yet the toolkit to install ß-amino acids is limited. Here we report their leader-independent incorporation into proteins in E. coli. Integrating an 11-residue splice tag into six different proteins permitted the site-selective introduction of ß-residues in vivo. The motif fusion at C-, N-terminal, and internal positions yielded various ß-residues. Our approach complements the few existing methods to introduce ß-amino acids or ketone-bearing moieties, suggesting diverse applications in chemical biology.


Asunto(s)
Escherichia coli , Procesamiento Proteico-Postraduccional , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Péptidos/química
12.
Angew Chem Int Ed Engl ; 61(39): e202206385, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35903999

RESUMEN

Thioesterases (TEs) are fundamentally important enzymes present in all bacteria and eukaryotes, where they have conserved functions in fatty acid biosynthesis and secondary metabolism. This work provides the first structural insights into a functionally distinct group of TEs that perform diverse acylations in polyketide and peptide biosynthesis (TEB s). Structural analysis of the oocydin (OocS) TEB domain facilitated identification and engineering of the active site to modulate acyl-group acceptance. In this way, we achieved higher reactivity using a structure-based approach, building a foundation for biocatalytic development of TEB -mediated O-acylation, a modification known to improve the bioactivity of oocydin-type polyketides. Lastly, the promiscuity of the OocS TEB motivated us to investigate, and ultimately provide evidence for, the production of longer chain branched oocydins in the native host Serratia plymuthica 4Rx13. This work frames the OocS TEB and homologs as invaluable synthetic biology tools for polyketide drug development.


Asunto(s)
Policétidos , Acilación , Dominio Catalítico , Ácidos Grasos , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Metabolismo Secundario
13.
Angew Chem Int Ed Engl ; 61(8): e202115802, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-34918870

RESUMEN

Genome mining and bioactivity studies suggested the sponge-derived bacterium Aquimarina sp. Aq135 as a producer of new antibiotics. Activity-guided isolation identified antibacterial peptides, named aquimarins, featuring a new scaffold with an unusual C-terminal amino group and chlorine moieties. Responsible for the halogenation is the FeII /α-ketoglutarate-dependent chlorinase AqmA that halogenates up to two isoleucine residues in a carrier protein-dependent fashion. Total syntheses of two natural aquimarins and eight non-natural variants were developed. Structure-activity relationship (SAR) studies with these compounds showed that the synthetically more laborious chlorinations are not required for antibacterial activity but enhance cytotoxicity. In contrast, variants lacking the C-terminal amine were virtually inactive, suggesting diamines similar to the terminal aquimarin residue as candidate building blocks for new peptidomimetic antibiotics.


Asunto(s)
Antibacterianos/química , Flavobacteriaceae/química , Péptidos/química , Antibacterianos/metabolismo , Conformación Molecular , Péptidos/genética , Péptidos/metabolismo , Estereoisomerismo
14.
Angew Chem Int Ed Engl ; 61(11): e202116614, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35020279

RESUMEN

Bacterial multimodular polyketide synthases (PKSs) are large enzymatic assembly lines that synthesize many bioactive natural products of therapeutic relevance. While PKS catalysis is mostly based on fatty acid biosynthetic principles, polyketides can be further diversified by post-PKS enzymes. Here, we characterized a remarkably versatile trans-acyltransferase (trans-AT) PKS from Serratia that builds structurally complex macrolides via more than ten functionally distinct PKS modules. In the oocydin PKS, we identified a new oxygenation module that α-hydroxylates polyketide intermediates, a halogenating module catalyzing backbone γ-chlorination, and modular O-acetylation by a thioesterase-like domain. These results from a single biosynthetic assembly line highlight the expansive biochemical repertoire of trans-AT PKSs and provide diverse modular tools for engineered biosynthesis from a close relative of E. coli.


Asunto(s)
Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Acilación , Biocatálisis , Halogenación , Hidroxilación , Sintasas Poliquetidas/química , Policétidos/química , Serratia/enzimología
15.
Nat Prod Rep ; 38(11): 1994-2023, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34821235

RESUMEN

Covering: up to 2021Metagenomics has yielded massive amounts of sequencing data offering a glimpse into the biosynthetic potential of the uncultivated microbial majority. While genome-resolved information about microbial communities from nearly every environment on earth is now available, the ability to accurately predict biocatalytic functions directly from sequencing data remains challenging. Compared to primary metabolic pathways, enzymes involved in secondary metabolism often catalyze specialized reactions with diverse substrates, making these pathways rich resources for the discovery of new enzymology. To date, functional insights gained from studies on environmental DNA (eDNA) have largely relied on PCR- or activity-based screening of eDNA fragments cloned in fosmid or cosmid libraries. As an alternative, shotgun metagenomics holds underexplored potential for the discovery of new enzymes directly from eDNA by avoiding common biases introduced through PCR- or activity-guided functional metagenomics workflows. However, inferring new enzyme functions directly from eDNA is similar to searching for a 'needle in a haystack' without direct links between genotype and phenotype. The goal of this review is to provide a roadmap to navigate shotgun metagenomic sequencing data and identify new candidate biosynthetic enzymes. We cover both computational and experimental strategies to mine metagenomes and explore protein sequence space with a spotlight on natural product biosynthesis. Specifically, we compare in silico methods for enzyme discovery including phylogenetics, sequence similarity networks, genomic context, 3D structure-based approaches, and machine learning techniques. We also discuss various experimental strategies to test computational predictions including heterologous expression and screening. Finally, we provide an outlook for future directions in the field with an emphasis on meta-omics, single-cell genomics, cell-free expression systems, and sequence-independent methods.


Asunto(s)
Enzimas/aislamiento & purificación , Metagenómica/métodos , Secuencia de Aminoácidos , Productos Biológicos/metabolismo , Dominio Catalítico , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/fisiología , Enzimas/química , Aprendizaje Automático , Microbiota , Filogenia
16.
Nat Prod Rep ; 38(1): 130-239, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32935693

RESUMEN

Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.


Asunto(s)
Biología Computacional/métodos , Enzimas/metabolismo , Péptidos/química , Péptidos/metabolismo , Ingeniería de Proteínas/métodos , Productos Biológicos/química , Productos Biológicos/clasificación , Productos Biológicos/metabolismo , Enzimas/química , Hidroxilación , Metilación , Péptidos/clasificación , Péptidos/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína/fisiología , Ribosomas/metabolismo
17.
Environ Microbiol ; 23(5): 2509-2521, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33734547

RESUMEN

Glutarimide-containing polyketides are known as potent antitumoral and antimetastatic agents. The associated gene clusters have only been identified in a few Streptomyces producers and Burkholderia gladioli symbiont. The new glutarimide-family polyketides, denominated sesbanimides D, E and F along with the previously known sesbanimide A and C, were isolated from two marine alphaproteobacteria Stappia indica PHM037 and Labrenzia aggregata PHM038. Structures of the isolated compounds were elucidated based on 1D and 2D homo and heteronuclear NMR analyses and ESI-MS spectrometry. All compounds exhibited strong antitumor activity in lung, breast and colorectal cancer cell lines. Subsequent whole genome sequencing and genome mining revealed the presence of the trans-AT PKS gene cluster responsible for the sesbanimide biosynthesis, described as sbn cluster. Strikingly, the modular architecture of downstream mixed type PKS/NRPS, SbnQ, revealed high similarity to PedH in pederin and Lab13 in labrenzin gene clusters, although those clusters are responsible for the production of structurally completely different molecules. The unexpected presence of SbnQ homologues in unrelated polyketide gene clusters across phylogenetically distant bacteria, raises intriguing questions about the evolutionary relationship between glutarimide-like and pederin-like pathways, as well as the functionality of their synthetic products.


Asunto(s)
Policétidos , Rhodobacteraceae , Familia de Multigenes , Sintasas Poliquetidas/genética , Simbiosis
18.
Nat Chem Biol ; 15(8): 813-821, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31308532

RESUMEN

Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are among the most complex known enzymes from secondary metabolism and are responsible for the biosynthesis of highly diverse bioactive polyketides. However, most of these metabolites remain uncharacterized, since trans-AT PKSs frequently occur in poorly studied microbes and feature a remarkable array of non-canonical biosynthetic components with poorly understood functions. As a consequence, genome-guided natural product identification has been challenging. To enable de novo structural predictions for trans-AT PKS-derived polyketides, we developed the trans-AT PKS polyketide predictor (TransATor). TransATor is a versatile bio- and chemoinformatics web application that suggests informative chemical structures for even highly aberrant trans-AT PKS biosynthetic gene clusters, thus permitting hypothesis-based, targeted biotechnological discovery and biosynthetic studies. We demonstrate the applicative scope in several examples, including the characterization of new variants of bioactive natural products as well as structurally new polyketides from unusual bacterial sources.


Asunto(s)
Bacterias/enzimología , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Productos Biológicos , Modelos Químicos , Filogenia , Sintasas Poliquetidas/genética , Policétidos/química , Poríferos/microbiología , Dominios Proteicos , Especificidad por Sustrato
19.
Org Biomol Chem ; 19(48): 10647-10651, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34847214

RESUMEN

Recently the first example of a class II terpene cyclase comprised of only a single domain was reported. Class II synthases are a diverse group of enzymes that catalyze exceptionally complex reactions, including the remarkable cyclization of steroids. This discovery of a single-domain enzyme being able to catalyze a steroid-like product contradicted the long-held tenet that complex class II cyclizations required double-domain enzymes. The proposed mechanism for the sterol-like cyclization of a monodomain class II terpene cyclase was studied computationally by using density functional theory (DFT). The complete pathway for the conversion of 5-geranyl-3,4-dihydroxybenzoate to the steroid-like pentacyclic product merosterolic acid A was elucidated. The formation of a tricyclic carbocation intermediate with three cyclohexane rings was found to be a concerted, but asynchronous, cyclization. The formation of the fourth ring proceeds with a low energy activation Friedel-Crafts reaction. Subsequent deprotonation of this pentacyclic system gave as the final product merosterolic acid. The overall conversion was found to be highly exothermic due to the conversion of three C-C double bonds to C-C single bonds.


Asunto(s)
Terpenos
20.
Proc Natl Acad Sci U S A ; 115(8): 1718-1723, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29439203

RESUMEN

Marine sponges are prolific sources of unique bioactive natural products. The sponge Theonella swinhoei is represented by several distinct variants with largely nonoverlapping chemistry. For the Japanese chemotype Y harboring diverse complex polyketides and peptides, we previously provided genomic and functional evidence that a single symbiont, the filamentous, multicellular organism "Candidatus Entotheonella factor," produces almost all of these compounds. To obtain further insights into the chemistry of "Entotheonella," we investigated another phylotype, "Candidatus Entotheonella serta," present in the T. swinhoei WA sponge chemotype, a source of theonellamide- and misakinolide-type compounds. Unexpectedly, considering the lower chemical diversity, sequencing of individual bacterial filaments revealed an even larger number of biosynthetic gene regions than for Ca E. factor, with virtually no overlap. These included genes for misakinolide and theonellamide biosynthesis, the latter assigned by comparative genomic and metabolic analysis of a T. swinhoei chemotype from Israel, and by biochemical studies. The data suggest that both compound families, which were among the earliest model substances to study bacterial producers in sponges, originate from the same bacterium in T. swinhoei WA. They also add evidence that metabolic richness and variability could be a more general feature of Entotheonella symbionts.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Simbiosis , Theonella/microbiología , Animales , Bacterias/química , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Genómica , Policétidos/metabolismo , Theonella/química , Theonella/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA