Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Small ; : e2405701, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155431

RESUMEN

Aza-fused aromatic π-conjugated networks are an important class of 2D graphitic analogs, which are generally constructed using aromatic precursors. Herein, the study describes a new synthetic approach and electrochemical properties of a self-exfoliating benzotristriazine 2D network (BTTN) constructed using aliphatic precursors, under relatively mild conditions. The obtained BTTN exhibits a nanodisc-like morphology, the self-exfoliation tendency of which is ascribed to the presence of structurally different macrocycles with high electronic repulsion between the layers. The benzotristriazine repeat units of BTTN is electroactive and holds higher carbon/nitrogen ratio when compared with the conventional graphitic aza-fused π-conjugated networks. The self-exfoliated BTTN nanodiscs show excellent electrochemical energy storage of 485 and 333 F g-1 at 1 A g-1 in three-electrode and two-electrode measurements, respectively. BTTN in a symmetric coin-cell architecture exhibits a high specific energy value of 46 Wh kg-1 at a power density of 1 kW kg-1 and shows excellent cyclic stability of 96% for 10 000 and 90% for 30 000 charge-discharge cycles at a higher current density of 5 A g-1, surpassing the device performance of most of the reported all-organic pseudocapacitive 2D networks.

2.
Langmuir ; 39(4): 1373-1385, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36652696

RESUMEN

One of the important understandings of porous solids like metal-organic frameworks (MOFs) is their flexibility. Therefore, there are certain computational studies on flexible MOFs in the literature, primarily concentrating on MIL-53, UiO-66, and DUT-49. Here, investigation of another class of MOF, that is, [Ni(1,4-pyrazine)2(AlF5)]n, was shown to have guest-induced flexible characteristics; nevertheless, the mechanism for the emergence of flexibility is uncertain. We simulated the structural flexibility of [Ni(1,4-pyrazine)2(AlF5)]n, named ALFFIVE-Ni-pyr-TBP, upon adsorption of a guest molecule based on force fields using the molecular dynamics (MD) method and Monte Carlo (MC) simulations. As the first step towards understanding guest-induced flexibility, the MC simulations were performed by relaxing the framework and then further comparing it with the rigid framework. Subsequently, MD simulations were executed on the ALFFIVE-Ni-pyr-TBP framework with and without the guest molecules. In the case of moisture adsorption, the MOF system was identified to undergo a geometric transformation from trigonal bipyramidal to square bipyramidal geometry due to the strong interaction of oxygen of the water with the metal aluminum. However, some tilting in the pyrazine ligand was observed in the presence of all the guest molecules. Therefore, the detailed guest-induced flexibility described in this work could support the ALFFIVE series to be explored for future adsorption applications.

3.
Inorg Chem ; 62(29): 11528-11540, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37440273

RESUMEN

A multifaceted metal-organic framework (MOF) with task-specific site-engineered pores can promise high-temperature and moisture-tolerant capture and non-redox fixation of CO2 under mild conditions as well as ultrasensitive detection of carcinogenic contaminants in water. Herein, we report a pillar-bilayered MOF that holds a nanochannel with contrasting functionalities for both these sustainable applications with improved performance characteristics. The twofold entangled robust framework exhibits CO2 adsorption at elevated temperatures with considerable MOF-gas interaction. Interestingly, CO2 selectivity unveils nearly a 3-fold improvement upon the rise of temperature, affording a CO2/N2 value of 820 at 313 K, which outperforms many porous adsorbents. Additionally, breakthrough simulation establishes complete separation and attests the potential of this MOF in the separation of flue gas mixture. Importantly, minor CO2 loss during multiple capture-release cycles and under a relative humidity of 75% promise practical usability of the material. Density functional theory (DFT) not only portrays the atomistic level snapshots of temperature-triggered CO2 inclusion inside this microporous vessel alongside the role of diverse CO2-philic sites but also validates the basis of N2-phobicity of an azo-functionalized linker on such increased selectivity. The guest-free MOF further demonstrates non-redox and recyclable CO2 fixation with wide epoxide tolerance under solvent-free mild conditions and even works at atmospheric pressure and room temperature. The crucial roles of high-density acid-base sites in both adsorption and catalysis are supported by control experiments and by comparing the activity of an unfunctionalized MOF. The hydrolytic stability and strong luminescence signature benefit the framework in aqueous-phase selective and fast responsive detection of detrimental roxarsone (ROX) with high quenching (7.56 × 104 M-1) and very low sensitivity (68 nM). Apart from varying degrees of an energy-transfer mechanism, the fluorosensing of ROX is comprehensively supported by in-depth DFT studies that manifest alteration of MOF energy levels in the presence of organoarsenic compounds and depict MOF-analyte supramolecular interactions.

4.
Phys Chem Chem Phys ; 25(44): 30458-30468, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37921019

RESUMEN

More than the permissible limit of acidic gases like CO2, SO2, and NO2 in the atmosphere are responsible for the formation of acid rain, the greenhouse effect and many other undesirable environmental hazards. So, the capture and utilization of these gases are essential for mankind. Herein, we proposed an azo-based square pillared MOF, [Ni(MF5)(1,2-bis(4-pyridy)diazene)2]n, with the CUS metal site, i.e. M = Al/Fe, for the selective capture and conversion of acidic gas molecules into commodity chemicals such as cyclic carbonate, sulphite and nitrite. With the aid of Density Functional Theory (DFT), [Ni(MF5)(1,2-bis(4-pyridy)diazene)2]n has been optimized, and the specific force field is derived via guest-host interaction. The Grand Canonical Monte Carlo (GCMC) simulation has been used to explore the guest-host interactions over a wide range of pressures, and their respective stability under pre-humidification is evaluated. The adsorption prediction reveals that MFFIVE-Ni-apy have a higher adsorptive capacity (37.1 mmol g-1), and especially ALFFIVE-Ni-apy possesses a higher affinity towards guest molecules (CO2, SO2) rather than FEFFIVE-Ni-apy. Additionally, the adsorption of gases in the presence of humidity reveals that ALFFIVE-Ni-apy has an optimal adsorption capacity for all investigated acidic gases even at 38.5 RH%. The absorbed acidic gases on MFFIVE-Ni-apy were used for the theoretical investigations on cycloaddition with the aid of DFT as an application perspective of the toxic gases instead of expelling into atmosphere. The Climbing Image Nudged Elastic Band (CI-NEB) approach was used to discover the transition state in this scenario, in which the cycloaddition of adsorbed CO2, SO2, and NO2 gases with epoxides leads to the formation of cyclic carbonates, sulphites, and nitrates, respectively.

5.
J Mol Struct ; 1281: 135110, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36785704

RESUMEN

Developing modifiable natural products those having antiviral activities against SARS-CoV-2 is a key research area which is popular in current scenario of COVID pandemic. A diaryl heptanoid curcumin and its derivatives are already presenting promising candidates for anti-viral drug development. We have synthesized single crystals of a dimethylamino derivative of natural curcumin and structural characterization was done by single crystal XRD analysis. Using steady-state absorption and emission spectra and guided by complimentary ab initio calculations, we unraveled the solvent effects on the photophysical properties of the dimethyl amino curcumin derivative. Chemical reactivity of the compound has investigated using frontier molecular orbitals and molecular electrostatic potential surface. High stability of the curcumin derivative in water environment has evaluated by Radial Distributions Functions (RDF) calculated via Molecular Dynamics (MD) simulations. The inhibitory activity of the title compound was evaluated by in silico methods and the stability of the protein-ligand complexes were studied using Molecular Dynamics simulations and MM-PBSA analysis. With this detailed study, we hope to motivate scientific community to develop new curcumin derivatives against SARS-CoV-2 virus.

6.
Br J Psychiatry ; 220(1): 4-6, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35045897

RESUMEN

Resilience is a dynamic, multi-level, multi-systemic process of positive adaptation at the individual, family and community levels. Promoting resilience can be a cost-effective form of preventive and early intervention, offering significant health advantages for young people throughout their lives. Developing resiliency interventions for youth and their families in low- and middle-income countries (LMICs), particularly in the context of the ongoing pandemic, is especially important given a lack of services and trained specialists, and poor levels of public spend on mental health, alongside marked and clustered psychosocial disadvantages and adverse childhood experiences. We propose a 'hybrid' model targeting 10- to 17 year-old children and their families, and options to engage through communities, schools and the family unit. These options will enhance individual and family resilience, and possibly buffer against adversity. The adaptations respect cultural and health beliefs, take account of structural drivers of inequalities and are suitable for LMICs.


Asunto(s)
Países en Desarrollo , Resiliencia Psicológica , Adolescente , Niño , Salud de la Familia , Humanos , Salud Mental , Pobreza
7.
Nature ; 532(7599): 348-52, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27049950

RESUMEN

Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

8.
Chemistry ; 26(72): 17445-17454, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-32767456

RESUMEN

The development of efficient heterogeneous catalysts suitable for carbon capture and utilization (CCU) under mild conditions is a promising step towards mitigating the growing concentration of CO2 in the atmosphere. Herein, we report the construction of a hydrogen-bonded 3D framework, {[Zn(hfipbba)(MA)]⋅3 DMF}n (hfipbba=4,4'-(hexaflouroisopropylene)bis(benzoic acid)) (HbMOF1) utilizing ZnII center, a partially fluorinated, long-chain dicarboxylate ligand (hfipbba), and an amine-rich melamine (MA) co-ligand. Interestingly, the framework possesses two types of 1D channels decorated with CO2 -philic (-NH2 and -CF3 ) groups that promote the highly selective CO2 adsorption by the framework, which was supported by computational simulations. Further, the synergistic involvement of both Lewis acidic and basic sites exposed in the confined 1D channels along with high thermal and chemical stability rendered HbMOF1 a good heterogeneous catalyst for the highly efficient fixation of CO2 in a reaction with terminal/internal epoxides at mild conditions (RT and 1 bar CO2 ). Moreover, in-depth theoretical studies were carried out using periodic DFT to obtain the relative energies for each stage involved in the catalytic reaction and an insight mechanistic details of the reaction is presented. Overall, this work represents a rare demonstration of rational design of a porous ZnII MOF incorporating multiple functional sites suitable for highly efficient fixation of CO2 with terminal/internal epoxides at mild conditions supported by comprehensive theoretical studies.

9.
Molecules ; 25(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580359

RESUMEN

Herein we report the synthesis and structural elucidation of two novel imine-based ligands, 2-(1,10-phenanthrolin-5-yl)imino)methyl)-5-bromophenol (PIB) and N-(1,10-phenanthrolin-5-yl)-1-(thiophen-3-yl)methanimine (PTM) ligands. An in vitro cytotoxicity assay of the synthesized molecules was carried out against breast, cervical, colorectal, and prostate cancer cell lines as well as immortalized human keratinocytes. The observations indicated that both the molecules possesses dose-dependent selective cytotoxicity of cancer cells with no detrimental effect on the normal cell lines. Furthermore, the detailed computational analysis of newly synthetized ligands (PIB and PTM) has been conducted in order to identify their most important parts from the perspective of local reactivity. The IC50 values of PIB treatment on MCF-7, HeLa, HCT-116 and PC-3 were 15.10, 16.25, 17.88, 17.55 and 23.86 micromoles, respectively. Meanwhile, the IC50 values of PTM on MCF-7, HeLa, HCT-116, PC-3 and HaCat were observed to be 14.82, 15.03, 17.88, 17.28 and 21.22 micromoles, respectively. For computational analysis, we have employed the combination of Density Functional Theory (DFT) calculations and MD simulations. DFT calculations provided us with information about structure and reactivity descriptors based on the electron distribution. Surfaces of molecular electrostatic potential (MEP) and averaged local ionization energy (ALIE) indicated the sites within studied molecules that are most reactive. These results indicated the importance of nitrogen atoms and OH group. Additionally, the values of bond dissociation for hydrogen abstraction showed that both molecules, especially the PTM, are stable toward the influence of autoxidation mechanism. On the other side, MD simulations gave us an insight how ligands interact with water molecules. Namely, the radial distribution functions (RDF) indicated that the hydrogen atom of the OH group in the case of the PIB has the most pronounced interactions with water.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Iminas/farmacología , Neoplasias/tratamiento farmacológico , Fenantrolinas/farmacología , Línea Celular Tumoral , Humanos , Iminas/síntesis química , Iminas/química , Ligandos , Simulación del Acoplamiento Molecular , Neoplasias/patología , Fenantrolinas/síntesis química , Fenantrolinas/química , Agua/química
10.
Angew Chem Int Ed Engl ; 59(22): 8713-8719, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-31693289

RESUMEN

Poor control on the exfoliation of covalent organic frameworks (COFs) remains a disadvantage for their application as two-dimensional nanosheets. An equally important problem is the reversible control at the available surface charges on COFs. Herein, a strategy for the reversible exfoliation, re-stacking, and surface-charge control of a propidium iodide based ionic covalent organic framework, PI-TFP, using cucurbit[7]uril (CB[7]) induced molecular recognition, is reported. The surface charge on PI-TFP facilitates its initial self-exfoliation. However, complexation with CB[7] resulted in re-stacking with concomitant decrease in zeta potential from +28±3.0 to +0.004±0.003 mV. Addition of 1-adamantylamine hydrochloride (AD) facilitates decomplexation of PI-TFP from CB[7], resulting in exfoliation and an increase in zeta potential to +24±3.0 mV. Such control on the exfoliation, re-stacking, and the associated regulation of the surface charge in PI-TFP was exploited for controlling bacterial growth. Thus, the activity of E. coli and S. aureus bacteria obtained with the self-exfoliated PI-TFP could be reversibly controlled by the CB[7]/AD pair.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Imidazoles/química , Imidazoles/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Amantadina/química , Relación Dosis-Respuesta a Droga , Propidio/química , Propiedades de Superficie
11.
Inorg Chem ; 58(15): 10084-10096, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31322345

RESUMEN

The synthesis and characterization of a mixed ligand metal-organic framework (MOF) with good thermal and chemical stability, {[Co(BDC)(L)·2H2O]·xG}n (CoMOF-2), involving an aromatic dicarboxylate (H2BDC = 1,4-benzenedicarboxylic acid) and an acyl-decorated N-donor linker [L = (E)-N'-(pyridin-4-ylmethylene) isonicotinohydrazide] by various physicochemical techniques, including Single crystal X-Ray Diffraction (SXRD), are reported. The MOF showed a good affinity for CO2 capture, and Grand Canonical Monte Carlo simulation studies exposed strong interactions of CO2 with the functionalized N-donor ligand of the framework. CoMOF-2 and KI act as an efficient binary catalyst for the sustainable utilization of CO2 with spiro-epoxy oxindole to spirocyclic carbonate under ambient conditions. Notably, herein we report MOF-based catalysis for the cycloaddition of oxindole-based epoxides with CO2 for harvesting new spirocyclic carbonates. Interestingly, we could isolate and crystallize six of the spirocyclic carbonate products, and the structure of the newly synthesized molecules has been established by SXRD analysis. We present a plausible proposed catalytic mechanism through activation of the epoxide ring by the Lewis acidic/basic sites present on the framework surface that is validated by molecular modeling.

12.
Phys Chem Chem Phys ; 21(29): 16127-16136, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31290872

RESUMEN

The CO2 separation performance has been explored under dry and pre-humidified conditions for the fluorinated metal organic frameworks SIFSIX-Ni-pyr, ALFFIVE-Ni-pyr, SIFSIX-Ni-bipyr and ALFFIVE-Ni-bipyr, which are incorporated with/without a coordinatively unsaturated site (CUS), Al, and organic linkers 1,4-pyrazine and 4,4'-bipyridine. The ultra-small pore size (∼4 Å) of the pyrazine analogues of fluorinated-MOFs, i.e. SIFSIX-Ni-pyr and ALFFIVE-Ni-pyr, showed infinite selectivity towards CO2 with low uptake capability under dry conditions, which drastically reduced to 0 wt% under very low pre-humidification conditions (∼10-15 wt% adsorbed moisture). In marked contrast, the bipyridine analogues SIFSIX-Ni-bipyr and ALFFIVE-Ni-bipyr showed significant CO2 capture performance of up to 30-40 wt% with pre-humidification. Further, both SIFSIX-Ni-bipyr and ALFFIVE-Ni-bipyr showed high CO2 selectivity as well as good working capacity at 1-10 bar while poor selectivity is observed for the pyrazine analogues with pre-humidification. The incorporation of Al as a CUS provides stability to the ALFFIVE-Ni-bipyr fluorinated-MOF under pre-humidified conditions due to the ability of Al to co-ordinate with water molecules in hydrogen bonded networks. Therefore, to develop physisorption-based CO2 capturing processes under pre-humidified conditions, the use of Al incorporated ALFFIVE-Ni-bipyr is highly suitable, which may outperform most of the fluorinated-MOFs and other classes of porous solids reported so far.

13.
Nat Mater ; 16(5): 526-531, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27992421

RESUMEN

Selective dinitrogen binding to transition metal ions mainly covers two strategic domains: biological nitrogen fixation catalysed by metalloenzyme nitrogenases, and adsorptive purification of natural gas and air. Many transition metal-dinitrogen complexes have been envisaged for biomimetic nitrogen fixation to produce ammonia. Inspired by this concept, here we report mesoporous metal-organic framework materials containing accessible Cr(III) sites, able to thermodynamically capture N2 over CH4 and O2. This fundamental study integrating advanced experimental and computational tools confirmed that the separation mechanism for both N2/CH4 and N2/O2 gas mixtures is driven by the presence of these unsaturated Cr(III) sites that allows a much stronger binding of N2 over the two other gases. Besides the potential breakthrough in adsorption-based technologies, this proof of concept could open new horizons to address several challenges in chemistry, including the design of heterogeneous biomimetic catalysts through nitrogen fixation.

14.
Chem Soc Rev ; 46(11): 3402-3430, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28555216

RESUMEN

The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.

15.
Chemphyschem ; 18(19): 2739-2746, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28691276

RESUMEN

The diffusivity of CO2 and N2 in the small-pore titanium-based bis(phosphonate) metal-organic framework MIL-91(Ti) was explored by using a combination of quasielastic neutron scattering measurements and molecular dynamics simulations. These two techniques were used to determine the loading dependence of the self-diffusivity, corrected and transport diffusivities of these two gases to complement our previously reported thermodynamics study, which revealed that this material was a promising candidate for CO2 /N2 separation. The calculated and measured diffusivities of both gases were shown to be of an order of magnitude sufficiently high, from 10-9 to 10-10  m2 s-1 , and N2 diffused faster than CO2 through the small channel of MIL-91(Ti). Consequently, the separation process does not involve any kinetic-driven limitations. This study further revealed that the global diffusion mechanism involves motions of gases along the channels by a jump sequence, and the residence times for CO2 in the region close to the specific PO⋅⋅⋅H⋅⋅⋅N zwitterionic sites are much higher than those for N2 , which explains the faster diffusivity observed for N2 .

16.
Langmuir ; 30(25): 7435-46, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24901733

RESUMEN

Molecular simulations were carried out to elucidate the influence of structural heterogeneity and of the presence of extra-framework cations and water molecules on the adsorption of methane in Engelhard titanosilicates, ETS-10 and ETS-4. The simulations employed three different modeling approaches, (i) with fixed cations and water at their single crystal positions, (ii) with fixed cations and water at their optimized positions, and (iii) with mobile extra-framework cations and water molecules. Simulations employing the final two approaches provided a more realistic description of adsorption in these materials, and showed that at least some cations and water molecules are displaced from the crystallographic positions obtained from single crystal data. Upon methane adsorption in the case of ETS-10, the cations move to the large rings, while in the case of ETS-4, the water molecules and cations migrate to more available space in the larger 12-membered ring channels for better accommodation of the methane molecules. For ETS-4, we also considered adsorption in all possible pure polymorph structures and then combined these to provide an estimate of adsorption in a real ETS-4 sample. By comparing simulated adsorption isotherms to experimental data, we were able to show that both the mobility of extra-framework species and the structural heterogeneity should be taken into account for realistic predictions of adsorption in titanosilicate materials.

17.
J Subst Use Addict Treat ; 158: 209257, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38072380

RESUMEN

BACKGROUND AND OBJECTIVES: Planning and implementing prison-based substance use disorder (SUD) interventions are challenging. We wanted to understand why and how people in correctional settings (CS) use drugs and to explore what policies, environmental, and interpersonal factors influence substance use among incarcerated people. Using the Behavior Change Wheel (BCW) framework, we proposed a thematic map with intervention functions to reduce substance use in CS. METHODS: We used the Framework Method of qualitative analysis. We did snowball sampling for the incarcerated people with drug use (PWD) and convenience sampling for the staff. The in-depth interview sample comprised 17 adult PWD, three prison administrative, and two healthcare staff. We determined the sample size by thematic data saturation. We followed a mixed coding approach for generating categories, i.e., deductive (based on the BCW framework) and inductive. The study constructed the final theoretical framework by determining the properties of the categories and relationships among the categories. RESULTS: We identified eleven categories aligned with the BCW framework. The themes were prison routine, interpersonal dynamics of the incarcerated population, exposure to substance use, attitude of staff towards PWD, experience with prison healthcare, willingness (to reduce drug use) and coping, compassion, drug use harms, conflict between staff and residents, stigma, and family/peer support. The BCW framework aided the identification of potential intervention functions and their interactions with the organizational policies that could influence PWD's capability-opportunity-motivation (COM) and drug use behavior (B). CONCLUSION: There is a need to raise awareness of SUD prevention and intervention among decision-makers and revisit the prison policies.


Asunto(s)
Motivación , Trastornos Relacionados con Sustancias , Adulto , Humanos , Prisiones , Síntomas Conductuales , Trastornos Relacionados con Sustancias/epidemiología
18.
J Mater Chem B ; 12(27): 6654-6667, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38873834

RESUMEN

Materiobiology is an emerging field focused on the physiochemical properties of biomaterials concerning biological outcomes which includes but is not limited to the biological responses and bioactivity of surface-modified biomaterials. Herein, we report a novel in vitro characterization platform for characterizing nanoparticle surface-modified 3D printed PLA scaffolds. We have introduced innovative design parameters that were practical for ubiquitous in vitro assays like those utilizing 96 and 24-well plates. Subsequently, gold and silica nanoparticles were deposited using two low-temperature plasma-assisted processes namely plasma electroless reduction (PER) and dusty plasma on 3D scaffolds. Materiobiological testing began with nanoparticle surface modification optimization on 96 well plate design 3D scaffolds. We have employed 3D laser confocal imaging and scanning electron microscopy to study the deposition of nanoparticles. It was found that the formation and distribution of the nanoparticles were time-dependent. In vitro assays were performed utilizing an osteosarcoma (MG-63) cell as a model. These cells were grown on both 96 and 24 well plate design 3D scaffolds. Subsequently, we performed different in vitro assays such as cell viability, and fluorescence staining of cytoskeletal actin and DNA incorporation. The actin cytoskeleton staining showed more homogeneity in the cell monolayer growing on the gold nanoparticle-modified 3D scaffolds than the control 3D PLA scaffold. Furthermore, the mineralization and protein adsorption experiments conducted on 96 well plate design scaffolds have shown enhanced mineralization and bovine serum albumin adsorption for the gold nanoparticle-modified scaffolds compared to the control scaffolds. Taken together, this study reports the efficacy of this new in vitro platform in conducting more reliable and efficient materiobiology studies. It is also worth mentioning that this platform has significant futuristic potential for developing as a high throughput screening platform. Such platforms could have a significant impact on the systematic study of biocompatibility and bioactive mechanisms of nanoparticle-modified 3D-printed scaffolds for tissue engineering. It would also provide unique ways to investigate mechanisms of biological responses and subsequent bioactive mechanisms for implantable biomaterials. Moreover, this platform can derive more consistent and reliable in vitro results which can improve the success rate of further in vivo experiments.


Asunto(s)
Oro , Impresión Tridimensional , Humanos , Oro/química , Dióxido de Silicio/química , Propiedades de Superficie , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Andamios del Tejido/química , Línea Celular Tumoral , Tamaño de la Partícula , Nanopartículas del Metal/química , Nanopartículas/química , Ensayo de Materiales
19.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36679280

RESUMEN

Recently, natural as well as synthetic polymers have been receiving significant attention as candidates to replace non-renewable materials. With the exponential developments in the world each day, the collateral damage to the environment is incessant. Increased demands for reducing pollution and energy consumption are the driving force behind the research related to surface-modified natural fibers (NFs), polymers, and various derivatives of them such as natural-fiber-reinforced polymer composites. Natural fibers have received special attention for industrial applications due to their favorable characteristics, such as low cost, abundance, light weight, and biodegradable nature. Even though NFs offer many potential applications, they still face some challenges in terms of durability, strength, and processing. Many of these have been addressed by various surface modification methodologies and compositing with polymers. Among different surface treatment strategies, low-temperature plasma (LTP) surface treatment has recently received special attention for tailoring surface properties of different materials, including NFs and synthetic polymers, without affecting any of the bulk properties of these materials. Hence, it is very important to get an overview of the latest developments in this field. The present article attempts to give an overview of different materials such as NFs, synthetic polymers, and composites. Special attention was placed on the low-temperature plasma-based surface engineering of these materials for diverse applications, which include but are not limited to environmental remediation, packaging, biomedical devices, and sensor development.

20.
ACS Appl Mater Interfaces ; 15(47): 54397-54408, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37965697

RESUMEN

Stimuli-responsive emission color modulation in fluorescent metal-organic frameworks (MOFs) promises luminescence-ink-based security application, while task-specific functionality-engineered pores can aid fast-responsive, discriminative, and ultralow detection of harmful organo-aromatics in the aqueous phase. Considering practical applicability, a self-calibrated fluoro-switch between encrypted and decrypted states is best suited for antiforgery measures, whereas image-based monitoring of organo-toxins by repetitive and handy methods over multiple platforms endorses in-field sensory potential. Herein, we constructed a mixed-ligand based chemically stable and bilayered-pillar MOF from -NH2-hooked pyridyl linker and tricarboxylate ligand that embraces negatively charged [Cd3(µ2-OH)(COO)6] node and shows pore-space-partitioning by nitrogen-rich flanked organic struts. Owing to the presence of a self-calibrating triazolylamine moiety-grafted auxiliary linker, this anionic MOF delineates reversible and multicyclic fluoro-swapping between protonated-encrypted and deprotonated-decrypted domains in the alternative presence of acid and base. Such pH-triggered, site-specific luminescence variation is utilized to construct highly regenerative anticounterfeiting labels for vivid acronym encryption. The intense fluorescence signature of the material is further harnessed in extremely selective and quick responsive sensing of harmful feed additive roxarsone (ROX) and dichloran (DCNA) pesticide in highly recyclable fashion with significant quenching and nanomolar limits of detection (ROX: 52 ppb; DCNA: 26.8 ppb). Notably, the ultrasensitive fluoro-detection of both these organo-toxins is successfully demonstrated via a handy paper-strip method as well as on the vegetable surface for real-time monitoring. Comprehensive density functional theory studies validate the electron transfer mechanism through redistribution of molecular orbital energy levels by each of the targeted analytes in this electron-rich framework besides evidencing MOF-analyte supramolecular interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA