Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 35(38)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904268

RESUMEN

Owing to the passive nature of liquid crystal (LC) materials, achieving luminous displays using pure LC materials is challenging. In addition, it is difficult to achieve a fast switching time using pristine ferroelectric LC devices without compromising their cell thickness. Herein, we have developed a fast switching and highly luminescent electro-optical device by dispersing a minute concentration of bimetallic nanoparticles (Au@Ag NPs) having a spherical gold core and a silver shell within a ferroelectric liquid crystal (FLC) host matrix, ZLI3654. Au@Ag core-shell NPs having synergic attributes of both counterparts were successfully synthesized by a facile seed-mediated route. The Au core helps to tune the shape of the Ag shell and provides enhanced electron density as well as improved stability against oxidation. Introducing nanoparticles induces little structural modifications to the host FLC, resulting in an improvement in the mesogenic alignment. Interestingly, ∼29-fold enhancement in the photoluminescence (PL) intensity is observed on dispersing 0.25 wt% of Au@Ag NPs into the FLC host matrix. The enhanced electromagnetic field in the FLC-nanocomposite is attributed to the Localized Surface Plasmon Resonance of Au@Ag NPs, which strengthens the photon absorption rates by the FLC molecules, culminating in the massive enrichment of the PL intensity. In addition, the improved localized electric field inside the FLC device led to a noticeable enhancement in the spontaneous polarization, dielectric permittivity, and, most interestingly, ∼53% fastening in the switching time at an optimum concentration (0.25 wt%) of Au@Ag NPs. The improved electro-optical parameters of the Au@Ag NPs/FLC composite have been compared with the performance of both pristine Au NPs/FLC and Ag NPs/FLC composites, respectively, for the comprehensiveness of the study. The present study paves a systematic way to develop FLC-based advanced electro-optical devices with faster switching and higher luminescence properties.

2.
J Environ Manage ; 247: 57-66, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31229786

RESUMEN

Three material engineering strategies in the form of doping (Boron-doping), nanostructuring (nanosheet (NS) formation) and decorating with plasmonic nanoparticles (loading with Ag metal), were integrated to improve the photocatalytic activity of graphitic carbon nitride (gC3N4). Concentrations of B-doping and Ag-loading were optimized to maximize the catalytic performance in the final nanocomposite of Ag-loaded B-doped gC3N4 NS. Combined effect of all three strategies successfully produced over 5 times higher rate towards degradation of organic dye pollutant, when compared to unmodified bulk gC3N4. Detailed characterization results revealed that incorporation of B in gC3N4 matrix reduces the band gap to increase the visible light absorption, while specific surface area is significantly enhanced upon formation of NS. Decoration of Ag nanoparticles (NPs) on B-doped gC3N4 NS assists in fast transfer of photogenerated electrons from gC3N4 to Ag NPs owing to the interfacial electric field across the junctions and thus reduces the recombination process. Investigations on individual strategies revealed that decoration of Ag NPs to induce better charge separation, is the most effective route for enhancing the photocatalytic activity.


Asunto(s)
Grafito , Nanopartículas del Metal , Catálisis , Luz , Plata
3.
Phys Chem Chem Phys ; 19(37): 25564-25573, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28902206

RESUMEN

The CO2 adsorption properties of an organic macrocycle, cucurbit[6]uril (CB[6]), have been evaluated through experimental and theoretical studies. Quantum mechanical calculations show that CB[6] is capable of adsorbing the CO2 molecule selectively within its cavity relative to nitrogen. Adsorption experiments at 298 K and at 1 bar pressure gave a CO2 adsorption value of 1.23 mmol g-1 for the unmodified material. Significant enhancements in the CO2 adsorption capacity of the material were experimentally demonstrated through surface modification using physical and chemical methods. Ethanolamine (EA) modified CB[6] provided an excellent sorption selectivity value of 121.4 for CO2/N2 at 323 K and is unique with respect to its discrimination potential between CO2 and N2. The chemical nature of the interaction between CO2 and amine is shown to be the primary mechanism for the enhanced CO2 absorption performance.

4.
Int J Biol Macromol ; 280(Pt 4): 136059, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341324

RESUMEN

The relationship between structural properties and functional characteristics of starch remains a hot subject among researchers. The crystalline property is a substantial characteristic of starch granules, undergoing different changes during modification techniques. These changes are closely related to the functional properties of modified starches. Physical modifications are eco-friendly techniques and are widely adopted for starch modifications. Therefore, understanding the impact of changes in crystalline properties during different physical modifications on starch functionality is the ultimate way to improve their industrial utilization. However, the existing literature still lacks the elucidation of changes in functional properties of starch in accordance with its crystalline properties during different physical treatments. Hence, this review summarizes the effects of the most important and widely used physical modifications on starch crystalline properties, highlighting the alterations in various functional properties such as hydration, pasting, gelatinization, and in vitro digestibility resulting from changes in crystalline characteristics in a single comprehensive discussion. Furthermore, the current review gives direction for envisaging the functionalization of starches based on deviations in the crystalline properties during several physical treatments.

5.
Food Chem ; 455: 139914, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823124

RESUMEN

Urea is also known as carbamide, an inexpensive and eco-friendly additive for starch functionalization. This article reviews the potential role of urea in starch modification, with the prominence of the mechanism of urea action, alterations in the starch structure and functional properties. In addition, current literature conveys the prospective effect of urea in fabricating starch films for food packaging, and the relevant areas that need to be covered in the forthcoming research are specified at the end of the article section. Urea can modify the diverse physico-chemical and functional properties of starch. Starch-based films exhibit pronounced effects on their mechanical and barrier properties upon the incorporation of urea, although this effect strongly depends on the urea content and degree of substitution (DS). Overall, urea holds great potential for use in the starch and bioplastic film industries, as it produces biocompatible derivatives with desirable performance.


Asunto(s)
Embalaje de Alimentos , Almidón , Urea , Almidón/química , Embalaje de Alimentos/instrumentación , Urea/química
6.
Mater Horiz ; 11(20): 5114-5122, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39120441

RESUMEN

Solar-driven interfacial evaporation has emerged as an efficient approach for wastewater treatment and seawater desalination. New trends demand adaptive technology to develop photothermal membranes with multifunctional features. Herein, we report a robust multi-purpose near-infrared (NIR)-active hydrogel composite (c-BC@N-LCD) from broad-spectrum active nitrogen-doped lignin-derived carbon dots (N-LCDs) covalently cross-linked with a bacterial cellulose (BC) matrix. BC provides adequate porosity and hydrophilicity required for easy water transport while managing heat loss. A commendable evaporation rate (ER) of 2.2 kg m-2 h-1 under one sun (1 kW m-2) is achieved by c-BC@N-LCD. The developed hydrogel system is also found to be efficient for desalination (∼2.1 kg m-2 h-1) and for remediating various pollutants (heavy metal ions, dyes, and pharmaceuticals) from feed water. The efficacy of the membrane remains unaltered by different grades of water, and hence can be adoptable for economically stressed communities living in water-polluted regions as well as those residing in coastal areas.


Asunto(s)
Carbono , Celulosa , Lignina , Purificación del Agua , Celulosa/química , Purificación del Agua/métodos , Lignina/química , Luz Solar , Membranas Artificiales , Porosidad , Contaminantes Químicos del Agua/análisis , Puntos Cuánticos/química , Bacterias , Hidrogeles/química
7.
Int J Biol Macromol ; 273(Pt 2): 133140, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878931

RESUMEN

The emergence of sustainable polymers and technologies has led to the development of innovative materials with minimal carbon emissions which find extensive applications in wearable electronics, biomedical sensors, and Internet of Things (IoT)-based monitoring systems. Nanocellulose which can be generated from abundant biomass materials has been widely recognized as a sustainable alternative for a diverse range of applications due to its remarkable properties and eco-friendly nature. By making use of the unique and easily accessible coordination transformation property of Co(II) ions and associated visible light absorption changes, we report a novel Co(II) cation-incorporated nanocellulose/malonic acid hybrid aerogel material that exhibits reversible thermochromism induced by thermal stimulus in the presence of atmospheric moisture. This effect is accentuated by the highly porous nature of the nanocellulose aerogel material we have developed. Besides the reversible thermochromic property which Co(II) ions exhibit, the metal ions act as very efficient reinforcing units contributing significantly to the structural stability and rigidity of the hierarchical aerogels by coordinative cross-linking through carboxylate moieties present in the TEMPO-oxidized cellulose nanofibers (TCNF) and additionally adding malonic acid to provide sufficient COO- for cross-linking. Thorough characterization and detailed investigation of as-prepared hybrid aerogels was conducted to evaluate their overall properties including reversible thermochromism and moisture sensor behaviour. Further, an Android mobile-based application was developed to demonstrate the real-world application of the aerogels for atmospheric humidity sensing.


Asunto(s)
Celulosa , Cobalto , Geles , Malonatos , Cobalto/química , Celulosa/química , Geles/química , Malonatos/química , Temperatura , Nanofibras/química
8.
Chem Asian J ; 18(2): e202201035, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36519438

RESUMEN

Gold nanoclusters (AuNCs) are an intensely pursued class of fluorophores with excellent biocompatibility, high water solubility, and ease of further conjugation. However, their low quantum yield limits their applications, such as ultra-sensitive chemical or molecular sensing. To address this problem, various strategies have been adopted for augmenting their fluorescence intensity. Herein, we report a facile and scalable approach for the fluorescence enhancement of bovine serum albumin (BSA) capped AuNCs (BSA-AuNCs) using periodic, close-packed polystyrene colloidal photonic crystals (CPCs). The slow photon effect at the bandgap edges is utilized for the increased light-matter interactions and thereby enhancing the fluorescence intensity of the BSA-AuNCs. Compared to the planar polystyrene control sample, the CPC film yielded a 14-fold enhancement in fluorescence intensity. Further, we demonstrated the as-prepared BSA-AuNCs-CPC as a solid-state platform for the highly sensitive and selective fluorescence turn-off detection of creatinine at nanomolar level.


Asunto(s)
Creatinina , Colorantes Fluorescentes , Nanopartículas del Metal , Creatinina/química , Fluorescencia , Colorantes Fluorescentes/química , Oro/química , Nanopartículas del Metal/química , Poliestirenos , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia
9.
Carbohydr Polym ; 292: 119723, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35725192

RESUMEN

A green strategy for the synthesis of bimetallic core-shell Au@Pd nanoflowers (NFs) employing banana pseudo-stem-derived TEMPO-oxidized cellulose nanocrystals (TCNC) as both capping and shape-directing agent via seed-mediated method is presented. Flower-like nanostructures of Au@Pd bound to TEMPO-oxidized cellulose nanocrystals (TCNC-Au@Pd) were decorated on amino-functionalized graphene (NH2-RGO) without losing their unique structure, allowing them to be deployed as an efficient, reusable and a green alternative heterogeneous catalyst. The decisive role of TCNC in the structural metamorphosis of nanoparticle morphology were inferred from the structural and morphology analyses. According to our study, the presence of -OH rich TCNC appears to play a pivotal role in the structured evolution of intricate nanostructure morphology. The feasibility of the bio-supported catalyst has been investigated in two concurrently prevalent model catalytic reactions, namely the oxygen reduction reaction (ORR) and the reduction of 4-nitrophenol, the best model reactions in fuel cell and industrial catalytic applications, respectively.


Asunto(s)
Celulosa Oxidada , Nanopartículas , Catálisis , Celulosa , Oro/química , Nanopartículas/química
10.
Biofouling ; 27(1): 111-21, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21181571

RESUMEN

Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher's shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel (SS) was compared to two novel nanostructured sol-gel coatings with differing hydrophobicity. Surfaces were characterized with respect to roughness, hydrophobicity, protein adsorption, biofilm retention, and community composition of the retained bacteria. Fewer bacteria were retained on the sol-gel coated surfaces compared to the rougher SS. However, the two sol-gel coatings did not differ in either protein adsorption, biofilm retention, or microbial community composition. When polished to a roughness similar to sol-gel, the SS was colonized by the same amount of bacteria as the sol-gel, but the bacterial community contained fewer Pseudomonas cells. In conclusion, biofilm retention was affected more by surface roughness than chemical composition under the condition described in this study.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biopelículas , Carne/microbiología , Acero Inoxidable/análisis , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Adhesión Bacteriana , Manipulación de Alimentos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Nanoestructuras , Filogenia , Proteínas/química , Propiedades de Superficie , Porcinos
11.
Anal Chim Acta ; 1181: 338893, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34556227

RESUMEN

Development of selective, ultra-sensitive, rapid and facile methods for the detection of chemical residues of toxic pesticides and hazardous chemicals are quite important in food safety, environmental monitoring and safeguarding public health. Herein, we presented a fluorescent turn-on aptasensor based on sulphur-doped graphene quantum dot (S-GQD) utilizing specific recognition and binding property of aptamer for the ultra-sensitive and selective detection of omethoate (OM) which is a systemic organophosphorus pesticide. The detection method is based on tuning aggregation-disaggregation mechanism of S-GQD by way of conformational alteration of the recognition probe. Fluorescence 'turn-on' process includes aggregation-induced quenching of S-GQD with aptamer via S-GQD-aptamer complex formation and its subsequent fluorescence recovery with the addition of OM by structural switching of S-GQD-aptamer complex to aptamer-omethoate complex. The reported 'switch-on' aptasensor has exhibited a low limit of detection of 0.001 ppm with high selectivity for OM over other pesticides.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Plaguicidas , Puntos Cuánticos , Dimetoato/análogos & derivados , Límite de Detección , Compuestos Organofosforados , Azufre
12.
ACS Omega ; 6(39): 25842-25844, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34632240

RESUMEN

[This corrects the article DOI: 10.1021/acsomega.0c00410.].

13.
Metallomics ; 13(8)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34351413

RESUMEN

Active surfaces with bactericidal properties are of paramount importance in health care sector as a judicious approach to confront prevalent challenges presented by disastrous pathogenic infections and antibiotic-resistant microbes. Herein, we present Bayerite underpinned Ag2O/Ag (ALD), a nanohybrid with excellent antibacterial and antibiofilm functionalities against tested standard strains and clinical isolates. The multicomponent system coexists and complement each other with respect to phase and functionalities, demonstrated by XRD, XPS, and TEM analyses. In situ reduction of Ag+ ions to Ag0 over Bayerite as a stable bound phase is favoured by pH of the reaction, yielding 60-80% bound Ag protruding outwards facilitating active surface for interaction with microbes. ALD has a minimum inhibitory concentration (MIC) of 0.068 mg/ml against clinical isolates: Pseudomonas aeruginosa RRLP1, RRLP2, Acinetobactor baumannii C78 and C80. Disc diffusion assay demonstrated excellent antibacterial activity against standard strains (positive control: standard antibiotic disc, Amikacin). ALD incorporated PMMA films (5 and 10 wt%; PALD-5 and PALD-10) exhibited significant contact killing (99.9%) of clinical isolates in drop-test besides strong antibacterial activity (disc diffusion assay) comparable to that of ALD. ALD exemplified a dose (0.034 and 0.017 mg/ml) dependent biofilm inhibition (P < 0.001) and significant eradication of pre-formed biofilms (P < 0.001) by clinical isolates. PALD 5 and PALD 10 significantly declined the number of viable biofilm associated bacteria (99.9%) compared to control. Both ALD and PALD samples are proposed as green antibacterial materials with antibiofilm properties. Results also present ample opportunity to explore PALD as antibacterial and/or antibiofilm coating formulations.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Óxidos/farmacología , Compuestos de Plata/farmacología , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana
14.
ACS Appl Bio Mater ; 4(5): 4373-4383, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35006849

RESUMEN

The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC-water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m-2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m-2 h-1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity.


Asunto(s)
Acetobacteraceae/química , Materiales Biocompatibles/química , Celulosa/química , Nanopartículas/química , Luz Solar , Titanio/química , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Tamaño de la Partícula , Purificación del Agua
15.
ACS Omega ; 5(21): 12136-12143, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32548393

RESUMEN

Direct visualization of soft organic molecules like cellulose is extremely challenging under a high-energy electron beam. Herein, we adopt two ionization damage extenuation strategies to visualize the lattice arrangements of the ß-(1→4)-d-glucan chains in carboxylated nanocellulose fibers (C-NCFs) having cellulose II crystalline phase using high-resolution transmission electron microscopy. Direct imaging of individual nanocellulose fibrils with high-resolution and least damage under high-energy electron beam is achieved by employing reduced graphene oxide, a conducting material with high electron transmittance and Ag+ ions, with high electron density, eliminating the use of sample-specific, toxic staining agents, or other advanced add-on techniques. Furthermore, the imaging of cellulose lattices in a C-NCF/TiO2 nanohybrid system is accomplished in the presence of Ag+ ions in a medium revealing the mode of association of C-NCFs in the system, which validates the feasibility of the presented strategy. The methods adopted here can provide further understanding of the fine structures of carboxylated nanocellulose fibrils for studying their structure-property relationship for various applications.

16.
J Am Chem Soc ; 131(13): 4928-36, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19281237

RESUMEN

A methodology is described for introducing a thin layer of covalently attached benzaldehyde on glassy carbon surfaces using aryl diazonium chemistry. Usually the electroreduction of aryl diazonium salts leads to the formation of an ill-defined multilayer because of the involvement of highly reactive aryl radicals that can add to already-grafted aryl groups. However, in this study we used a two-step "formation-degradation" procedure to solve this problem with the first step consisting of an electrografting of an aryl diazonium salt of a long-chain and bulky alkyl hydrazone onto a glassy carbon surface. The design of the hydrazone group serves to minimize multilayer formation by greatly diminishing the grafting rate after the first-layer formation and at the same time preventing radical additions from taking place at the inner aryl ring. Another valuable property of the hydrazone group is that it easily can be deprotected to the corresponding aldehyde by acid hydrolysis (i.e., the degradation step). In this manner, a thin and well-defined film of covalently attached benzaldehyde with an estimated coverage of 4 x 10(-10) mol cm(-2) was formed. The electrochemical responses of benzaldehyde were highly reproducible and largely independent of grafting medium (water or DMSO) and along with that also the thickness of the initially grafted film. AFM and contact angle measurements support the findings. The "formation-degradation" approach thus lays the foundation for carrying out further functionalization reactions in a controlled manner.

17.
Biomacromolecules ; 10(10): 2759-66, 2009 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-19764720

RESUMEN

We utilize an aqueous extract of fish proteins (FPs) as a coating for minimizing the adsorption of fibrinogen (Fg) and human serum albumin (HSA). The surfaces include stainless steel (SS), gold (Au), silicon dioxide (SiO(2)), and poly(styrene) (PS). The adsorption processes (kinetics and adsorbed mass) are followed by quartz crystal microbalance with dissipation (QCM-D). Complementary surface information is provided by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). QCM-D shows no mass increases to any of the FP-coated surfaces upon treating with Fg or HSA. Also, when Fg- or HSA-coated surfaces are exposed to the FPs, a significant increase in adsorbed mass occurs because the FPs are highly surface-active displacing Fg. Additionally, fluorescence microscopy confirms that very little Fg adsorbs to the FP-coated surfaces. We propose that FP coatings prevent protein adsorption by steric stabilization and could be an alternative method for preventing unwanted bioadhesion on medical materials.


Asunto(s)
Proteínas/química , Adsorción , Animales , Peces , Cinética , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Propiedades de Superficie
18.
Ultramicroscopy ; 109(2): 161-6, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19059723

RESUMEN

Recently we reported a simple method for obtaining both monolayer thickness and surface patterning using self-assembled monolayers (SAMs). Here we presented a straightforward method for controlling the formation of SAMs over surfaces useful for both chemical and biological applications. Atomic force microscopy (AFM) has been used to investigate the growth mechanism and formation of octadecylsiloxane (ODS) films obtained using a less-reactive silane; octadecyltrimethoxysilane (OTMS). SAMs formation from both OTMS and octadecyltrichlorosilane (ODTS) differ in the hydrolysis step where ODTS results in hydrochloric acid formation, which may affect the delicate features on surfaces. On the other hand, OTMS does not show this behavior. In contrast to monolayer formation from chlorosilane precursors, methoxysilane SAMs have been studied less extensively. Our observations highlight the importance of controlling water content during the formation of ODS monolayers in order to get well-ordered SAMs. We have also seen that, like ODTS, OTMS exhibits monolayer growth through an island expansion process but with a comparatively slow growth rate and different island morphology. The average height of islands, surface coverage, contact angle and root-mean-square (RMS) roughness increase with OTMS adsorption time in a consecutive manner.

19.
J Am Chem Soc ; 130(39): 13074-8, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18767835

RESUMEN

In the biomineralization process, the changes in conformation of organic matrix may be a widespread phenomenon. Investigation of the structural relationship between organic and inorganic materials is the main subject. The approach taken was to extract quantitative information of the variations in polyelectrolyte conformation during the mineralization process using atomic force microscopy. The results infer the evidence of the role of polyelectrolyte conformation in mineralization of calcium carbonate and the methods for understanding the principle that govern biomineralization.


Asunto(s)
Carbonato de Calcio/química , Electrólitos/química , Magnesio/química , Polímeros/química , Acrilamidas/química , Resinas Acrílicas/química , Alcanosulfonatos/química , Cationes Bivalentes , Microscopía de Fuerza Atómica/métodos , Conformación Molecular
20.
Ultramicroscopy ; 108(5): 458-64, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17706871

RESUMEN

A number of strategies have been developed including soft lithography and photolithography for patterning various surfaces. Here we have discussed a customized strategy for surface patterning of nanosized, silane-based SAMs and monolayer thickness measurement investigated using atomic force microscope (AFM). We have utilized the versatile morphology of a binary polymer blend to generate patterned SAMs over silicon substrate by employing a selective dissolution procedure. This method was confirmed with different organosilanes with varying number of C-atoms and to other polymer blend. The samples were imaged both in tapping mode and pulsed force mode AFM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA