Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D909-D918, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37870433

RESUMEN

Diverse individuals age at different rates and display variable susceptibilities to tissue aging, functional decline and aging-related diseases. Centenarians, exemplifying extreme longevity, serve as models for healthy aging. The field of human aging and longevity research is rapidly advancing, garnering significant attention and accumulating substantial data in recent years. Omics technologies, encompassing phenomics, genomics, transcriptomics, proteomics, metabolomics and microbiomics, have provided multidimensional insights and revolutionized cohort-based investigations into human aging and longevity. Accumulated data, covering diverse cells, tissues and cohorts across the lifespan necessitates the establishment of an open and integrated database. Addressing this, we established the Human Aging and Longevity Landscape (HALL), a comprehensive multi-omics repository encompassing a diverse spectrum of human cohorts, spanning from young adults to centenarians. The core objective of HALL is to foster healthy aging by offering an extensive repository of information on biomarkers that gauge the trajectory of human aging. Moreover, the database facilitates the development of diagnostic tools for aging-related conditions and empowers targeted interventions to enhance longevity. HALL is publicly available at https://ngdc.cncb.ac.cn/hall/index.


Asunto(s)
Envejecimiento , Bases de Datos Factuales , Longevidad , Multiómica , Anciano de 80 o más Años , Humanos , Adulto Joven , Envejecimiento/genética , Biomarcadores , Susceptibilidad a Enfermedades , Genómica , Longevidad/genética
2.
Protein Cell ; 15(8): 575-593, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38482631

RESUMEN

Epigenetic clocks are accurate predictors of human chronological age based on the analysis of DNA methylation (DNAm) at specific CpG sites. However, a systematic comparison between DNA methylation data and other omics datasets has not yet been performed. Moreover, available DNAm age predictors are based on datasets with limited ethnic representation. To address these knowledge gaps, we generated and analyzed DNA methylation datasets from two independent Chinese cohorts, revealing age-related DNAm changes. Additionally, a DNA methylation aging clock (iCAS-DNAmAge) and a group of DNAm-based multi-modal clocks for Chinese individuals were developed, with most of them demonstrating strong predictive capabilities for chronological age. The clocks were further employed to predict factors influencing aging rates. The DNAm aging clock, derived from multi-modal aging features (compositeAge-DNAmAge), exhibited a close association with multi-omics changes, lifestyles, and disease status, underscoring its robust potential for precise biological age assessment. Our findings offer novel insights into the regulatory mechanism of age-related DNAm changes and extend the application of the DNAm clock for measuring biological age and aging pace, providing the basis for evaluating aging intervention strategies.


Asunto(s)
Envejecimiento , Metilación de ADN , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Envejecimiento/genética , Relojes Biológicos/genética , China , Estudios de Cohortes , Islas de CpG , Pueblos del Este de Asia/genética , Epigénesis Genética
3.
Innovation (Camb) ; 4(1): 100380, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36747595

RESUMEN

Exercise benefits the whole organism, yet, how tissues across the body orchestrally respond to exercise remains enigmatic. Here, in young and old mice, with or without exercise, and exposed to infectious injury, we characterized the phenotypic and molecular adaptations to a 12-month exercise across 14 tissues/organs at single-cell resolution. Overall, exercise protects tissues from infectious injury, although more effectively in young animals, and benefits aged individuals in terms of inflammaging suppression and tissue rejuvenation, with structural improvement in the central nervous system and systemic vasculature being the most prominent. In vascular endothelial cells, we found that readjusting the rhythmic machinery via the core circadian clock protein BMAL1 delayed senescence and facilitated recovery from infectious damage, recapitulating the beneficial effects of exercise. Our study underscores the effect of exercise in reconstituting the youthful circadian clock network and provides a foundation for further investigating the interplay between exercise, aging, and immune challenges across the whole organism.

4.
Med ; 4(11): 825-848.e13, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516104

RESUMEN

BACKGROUND: Translating aging rejuvenation strategies into clinical practice has the potential to address the unmet needs of the global aging population. However, to successfully do so requires precise quantification of aging and its reversal in a way that encompasses the complexity and variation of aging. METHODS: Here, in a cohort of 113 healthy women, tiled in age from young to old, we identified a repertoire of known and previously unknown markers associated with age based on multimodal measurements, including transcripts, proteins, metabolites, microbes, and clinical laboratory values, based on which an integrative aging clock and a suite of customized aging clocks were developed. FINDINGS: A unified analysis of aging-associated traits defined four aging modalities with distinct biological functions (chronic inflammation, lipid metabolism, hormone regulation, and tissue fitness), and depicted waves of changes in distinct biological pathways peak around the third and fifth decades of life. We also demonstrated that the developed aging clocks could measure biological age and assess partial aging deceleration by hormone replacement therapy, a prevalent treatment designed to correct hormonal imbalances. CONCLUSIONS: We established aging metrics that capture systemic physiological dysregulation, a valuable framework for monitoring the aging process and informing clinical development of aging rejuvenation strategies. FUNDING: This work was supported by the National Natural Science Foundation of China (32121001), the National Key Research and Development Program of China (2022YFA1103700 and 2020YFA0804000), the National Natural Science Foundation of China (81502304), and the Quzhou Technology Projects (2022K46).


Asunto(s)
Envejecimiento , Pueblos del Este de Asia , Humanos , Femenino , Anciano , Envejecimiento/genética , Fenotipo , Rejuvenecimiento , China/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA