Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Astrobiology ; 8(3): 639-52, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18554085

RESUMEN

The ability to locate and characterize icy deposits and other hydrogenous materials on the Moon and Mars will help us understand the distribution of water and, therefore, possible habitats at Mars, and may help us locate primitive prebiotic compounds at the Moon's poles. We have developed a rover-borne neutron probe that localizes a near-surface icy deposit and provides information about its burial depth and abundance. We have also developed a borehole neutron probe to determine the stratigraphy of hydrogenous subsurface layers while operating within a drill string segment. In our field tests, we have used a neutron source to "illuminate" surrounding materials and gauge the instruments' efficacy, and we can simulate accurately the observed instrument responses using a Monte Carlo nuclear transport code (MCNPX). An active neutron source would not be needed for lunar or martian near-surface exploration: cosmic-ray interactions provide sufficient neutron flux to depths of several meters and yield better depth and abundance sensitivity than an active source. However, for deep drilling (>or=10 m depth), a source is required. We also present initial tests of a borehole gamma ray lithodensity tool and demonstrate its utility in determining soil or rock densities and composition.


Asunto(s)
Rayos gamma , Neutrones , Vuelo Espacial/instrumentación , Hidrógeno/análisis , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA