Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 806(Pt 3): 151320, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743875

RESUMEN

Overuse of agrochemicals is linked to nutrient loss, greenhouse gases (GHG) emissions, and resource depletion thus requiring the development of sustainable agricultural solutions. Cultivated microalgal biomass could provide such a solution. The environmental consequences of algal biomass application in agriculture and more specifically its effect on soil GHG emissions are understudied. Here we report the results of a field experiment of wheat grown on three different soil types under the same climatic conditions and fertilized by urea or the untreated biomass of fresh-water green microalga (Coelastrella sp.). The results show that neither soil type nor fertilization types impacted the aboveground wheat biomass, whereas, soil microbiomes differed in accordance with soil but not the fertilizer type. However, wheat grain nitrogen (N) content and soil N oxides emissions were significantly lower in plots fertilized by algal biomass compared to urea. Grain N content in the wheat grain that was fertilized by algal biomass was between 1.3%-1.5% vs. 1.6%-2.0% in the urea fertilized wheat. Cumulative soil nitric oxide (NO) emissions were 2-5 fold lower, 313-726 g N ha-1 season-1 vs. 909-3079 g N ha-1 season-1. Cumulative soil nitrous oxide (N2O) emissions were 2-fold lower, 90-348 g N ha-1 season-1 vs. 147-761 g N ha-1 season-1. The lower emissions resulted in a 4-11 fold lower global warming impact of the algal fertilized crops. This calculation excluded the CO2 cost from the algae biomass production. Once included algal fertilization had a similar, or 40% higher, climatic impact compared to the urea fertilization.


Asunto(s)
Microalgas , Microbiota , Agricultura , Fertilización , Fertilizantes/análisis , Nitrógeno/análisis , Óxido Nitroso/análisis , Suelo , Triticum
2.
Plants (Basel) ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501368

RESUMEN

Duckweeds (Lemnaceae) are tiny plants that float on aquatic surfaces and are typically isolated from temperate and equatorial regions. Yet, duckweed diversity in Mediterranean and arid regions has been seldom explored. To address this gap in knowledge, we surveyed duckweed diversity in Israel, an ecological junction between Mediterranean and arid climates. We searched for duckweeds in the north and center of Israel on the surface of streams, ponds and waterholes. We collected and isolated 27 duckweeds and characterized their morphology, molecular barcodes (atpF-atpH and psbK-psbI) and biochemical features (protein content and fatty acids composition). Six species were identified-Lemna minor, L. gibba and Wolffia arrhiza dominated the duckweed populations, and together with past sightings, are suggested to be native to Israel. The fatty acid profiles and protein content further suggest that diverged functions have attributed to different haplotypes among the identified species. Spirodela polyrhiza, W. globosa and L. minuta were also identified but were rarer. S. polyrhiza was previously reported in our region, thus, its current low abundance should be revisited. However, L. minuta and W. globosa are native to America and Far East Asia, respectively, and are invasive in Europe. We hypothesize that they may be invasive species to our region as well, carried by migratory birds that disperse them through their migration routes. This study indicates that the duckweed population in Israel's aquatic environments consists of both native and transient species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA