Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Neurosci ; 44(8)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38195508

RESUMEN

The olivo-cerebellar system plays an important role in vertebrate sensorimotor control. Here, we investigate sensory representations in the inferior olive (IO) of larval zebrafish and their spatial organization. Using single-cell labeling of genetically identified IO neurons, we find that they can be divided into at least two distinct groups based on their spatial location, dendritic morphology, and axonal projection patterns. In the same genetically targeted population, we recorded calcium activity in response to a set of visual stimuli using two-photon imaging. We found that most IO neurons showed direction-selective and binocular responses to visual stimuli and that the functional properties were spatially organized within the IO. Light-sheet functional imaging that allowed for simultaneous activity recordings at the soma and axonal level revealed tight coupling between functional properties, soma location, and axonal projection patterns of IO neurons. Taken together, our results suggest that anatomically defined classes of IO neurons correspond to distinct functional types, and that topographic connections between IO and cerebellum contribute to organization of the cerebellum into distinct functional zones.


Asunto(s)
Núcleo Olivar , Pez Cebra , Animales , Larva , Núcleo Olivar/fisiología , Neuronas/fisiología , Cerebelo/fisiología
2.
Nature ; 549(7671): 292, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28905914

RESUMEN

This corrects the article DOI: 10.1038/nature23014.

3.
Nature ; 547(7664): 445-448, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28700578

RESUMEN

When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal's frame of reference. Despite this, many aquatic animals consistently orient and swim against oncoming flows (a behaviour known as rheotaxis) even in the absence of visual cues. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that, in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioural data that support a novel algorithm based on such local velocity gradients that fish use to avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, to measure its temporal change after swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioural algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviours in moving fluids.


Asunto(s)
Larva/fisiología , Mecanotransducción Celular , Reología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Algoritmos , Animales , Señales (Psicología) , Orientación/fisiología , Estimulación Luminosa , Robótica
4.
Nature ; 545(7654): 345-349, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28489821

RESUMEN

High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.


Asunto(s)
Encéfalo/ultraestructura , Microscopía Electrónica , Pez Cebra , Anatomía Artística , Animales , Atlas como Asunto , Axones/metabolismo , Axones/ultraestructura , Encéfalo/anatomía & histología , Encéfalo/citología , Conjuntos de Datos como Asunto , Larva/anatomía & histología , Larva/citología , Larva/ultraestructura , Microscopía de Fluorescencia por Excitación Multifotónica , Publicación de Acceso Abierto , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo
5.
PLoS Comput Biol ; 15(4): e1006699, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30958870

RESUMEN

We present Stytra, a flexible, open-source software package, written in Python and designed to cover all the general requirements involved in larval zebrafish behavioral experiments. It provides timed stimulus presentation, interfacing with external devices and simultaneous real-time tracking of behavioral parameters such as position, orientation, tail and eye motion in both freely-swimming and head-restrained preparations. Stytra logs all recorded quantities, metadata, and code version in standardized formats to allow full provenance tracking, from data acquisition through analysis to publication. The package is modular and expandable for different experimental protocols and setups. Current releases can be found at https://github.com/portugueslab/stytra. We also provide complete documentation with examples for extending the package to new stimuli and hardware, as well as a schema and parts list for behavioral setups. We showcase Stytra by reproducing previously published behavioral protocols in both head-restrained and freely-swimming larvae. We also demonstrate the use of the software in the context of a calcium imaging experiment, where it interfaces with other acquisition devices. Our aims are to enable more laboratories to easily implement behavioral experiments, as well as to provide a platform for sharing stimulus protocols that permits easy reproduction of experiments and straightforward validation. Finally, we demonstrate how Stytra can serve as a platform to design behavioral experiments involving tracking or visual stimulation with other animals and provide an example integration with the DeepLabCut neural network-based tracking method.


Asunto(s)
Conducta Animal/fisiología , Programas Informáticos , Animales , Biología Computacional , Sistemas de Computación , Diseño de Equipo , Larva/fisiología , Metadatos , Modelos Neurológicos , Redes Neurales de la Computación , Estimulación Luminosa , Lenguajes de Programación , Restricción Física , Grabación en Video , Pez Cebra/fisiología
6.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344594

RESUMEN

Genetically encoded calcium indicators (GECIs) have become a widespread tool for the visualization of neuronal activity. As compared to popular GCaMP GECIs, the FGCaMP indicator benefits from calmodulin and M13-peptide from the fungi Aspergillus niger and Aspergillus fumigatus, which prevent its interaction with the intracellular environment. However, FGCaMP exhibits a two-phase fluorescence behavior with the variation of calcium ion concentration, has moderate sensitivity in neurons (as compared to the GCaMP6s indicator), and has not been fully characterized in vitro and in vivo. To address these limitations, we developed an enhanced version of FGCaMP, called FGCaMP7. FGCaMP7 preserves the ratiometric phenotype of FGCaMP, with a 3.1-fold larger ratiometric dynamic range in vitro. FGCaMP7 demonstrates 2.7- and 8.7-fold greater photostability compared to mEGFP and mTagBFP2 fluorescent proteins in vitro, respectively. The ratiometric response of FGCaMP7 is 1.6- and 1.4-fold higher, compared to the intensiometric response of GCaMP6s, in non-stimulated and stimulated neuronal cultures, respectively. We reveal the inertness of FGCaMP7 to the intracellular environment of HeLa cells using its truncated version with a deleted M13-like peptide; in contrast to the similarly truncated variant of GCaMP6s. We characterize the crystal structure of the parental FGCaMP indicator. Finally, we test the in vivo performance of FGCaMP7 in mouse brain using a two-photon microscope and an NVista miniscope; and in zebrafish using two-color ratiometric confocal imaging.


Asunto(s)
Calcio/metabolismo , Expresión Génica , Imagen Molecular , Neuronas/metabolismo , Potenciales de Acción , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Hongos/genética , Genes Reporteros , Células HeLa , Humanos , Ratones , Microscopía Fluorescente , Modelos Moleculares , Imagen Molecular/métodos , Neuronas/citología , Conformación Proteica , Ingeniería de Proteínas , Relación Estructura-Actividad , Corteza Visual/fisiología
7.
Nat Methods ; 12(11): 1039-46, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26778924

RESUMEN

In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal­regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.


Asunto(s)
Encéfalo/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Neuritas/metabolismo , Algoritmos , Animales , Automatización , Conducta Animal , Encéfalo/fisiología , Mapeo Encefálico/métodos , Calcio/química , Inmunohistoquímica , Microscopía Confocal , Neuronas/metabolismo , Neuronas/fisiología , Fosforilación , Análisis de Componente Principal , Reproducibilidad de los Resultados , Programas Informáticos , Natación , Pez Cebra
8.
Nature ; 485(7399): 471-7, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22622571

RESUMEN

A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.


Asunto(s)
Adaptación Fisiológica/fisiología , Encéfalo/citología , Encéfalo/fisiología , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Larva/fisiología , Aprendizaje/fisiología , Locomoción/fisiología , Modelos Neurológicos , Red Nerviosa , Neurópilo/fisiología , Estimulación Luminosa , Análisis de la Célula Individual , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo
9.
J Exp Biol ; 218(Pt 9): 1433-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25792753

RESUMEN

Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (<10 mm s(-1)) and then plateaus for higher values. Typical latencies are >1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models.


Asunto(s)
Natación , Campos Visuales , Pez Cebra/fisiología , Animales , Distribución de Poisson , Procesos Estocásticos
10.
eNeuro ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960706

RESUMEN

The cerebellum is a conserved structure of the vertebrate brain involved in the timing and calibration of movements. Its function is supported by the convergence of fibers from granule cells (GCs) and inferior olive neurons (IONs) onto Purkinje cells (PCs). Theories of cerebellar function postulate that IONs convey error signals to PCs that, paired with the contextual information provided by GCs, can instruct motor learning.Here, we use the larval zebrafish to investigate (i) how sensory representations of the same stimulus vary across GCs and IONs and (ii) how PC activity reflects these two different input streams. We use population calcium imaging to measure IONs and GCs responses to flashes of diverse luminance and duration. First, we observe that GCs show tonic and graded responses, as opposed to IONs, whose activity peaks mostly at luminance transitions, consistently with the notion that GCs and IONs encode context and error information, respectively. Secondly, we show that GC activity is patterned over time: some neurons exhibit sustained responses for the entire duration of the stimulus, while in others activity ramps up with slow time constants. This activity could provide a substrate for time representation in the cerebellum. Together, our observations give support to the notion of an error signal coming from IONs and provide the first experimental evidence for a temporal patterning of GC activity over many seconds.Significance statement The cerebellum is an important brain structure shared by all vertebrates, playing a crucial role in sensorimotor behavior. By using calcium imaging in larval zebrafish, we investigated sensory responses across granule cells (GCs), Purkinje cells. (PCs), and inferior olive neurons (IONs). We describe how GCs show tonic and graded responses, as opposed to IONs, more active at stimulus transition times, confirming the notion that GCs and IONs encode context and error information, respectively. We also show how time could be represented in the cerebellum by patterned activity in GCs. Together, our observations support to the notion of an error signal coming from IONs and provide the first experimental evidence for a temporal patterning of GC activity over many seconds.

11.
Curr Biol ; 34(3): 489-504.e7, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38211586

RESUMEN

Animals must maintain physiological processes within an optimal temperature range despite changes in their environment. Through behavioral assays, whole-brain functional imaging, and neural ablations, we show that larval zebrafish, an ectothermic vertebrate, achieves thermoregulation through homeostatic navigation-non-directional and directional movements toward the temperature closest to its physiological setpoint. A brain-wide circuit encompassing several brain regions enables this behavior. We identified the preoptic area of the hypothalamus (PoA) as a key brain structure in triggering non-directional reorientation when thermal conditions are worsening. This result shows an evolutionary conserved role of the PoA as principal thermoregulator of the brain also in ectotherms. We further show that the habenula (Hb)-interpeduncular nucleus (IPN) circuit retains a short-term memory of the sensory history to support the generation of coherent directed movements even in the absence of continuous sensory cues. We finally provide evidence that this circuit may not be exclusive for temperature but may convey a more abstract representation of relative valence of physiologically meaningful stimuli regardless of their specific identity to enable homeostatic navigation.


Asunto(s)
Habénula , Pez Cebra , Animales , Pez Cebra/fisiología , Área Preóptica , Habénula/fisiología , Larva/fisiología , Regulación de la Temperatura Corporal
12.
J Neurosci ; 32(40): 13819-40, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23035093

RESUMEN

Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.


Asunto(s)
Señalización del Calcio , Colorantes Fluorescentes/química , Fluorometría/métodos , Proteínas Fluorescentes Verdes/química , Neuroimagen/métodos , Neuronas/química , Péptidos/química , Transmisión Sináptica , Animales , Astrocitos/química , Astrocitos/ultraestructura , Caenorhabditis elegans , Cristalografía por Rayos X , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Colorantes Fluorescentes/análisis , Genes Sintéticos , Vectores Genéticos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Células HEK293/química , Células HEK293/ultraestructura , Hipocampo/química , Hipocampo/citología , Humanos , Larva , Rayos Láser , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Neuromuscular/química , Unión Neuromuscular/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructura , Neurópilo/química , Neurópilo/fisiología , Neurópilo/ultraestructura , Neuronas Receptoras Olfatorias/química , Neuronas Receptoras Olfatorias/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Péptidos/análisis , Péptidos/genética , Estimulación Luminosa , Conformación Proteica , Ratas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Células Bipolares de la Retina/química , Células Bipolares de la Retina/fisiología , Células Bipolares de la Retina/ultraestructura , Pez Cebra/crecimiento & desarrollo
13.
Learn Mem ; 19(4): 170-7, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22434824

RESUMEN

The performance of developing zebrafish in both classical and operant conditioning assays was tested with a particular focus on the emergence of these learning behaviors during development. Strategically positioned visual cues paired with electroshocks were used in two fully automated assays to investigate both learning paradigms. These allow the evaluation of the behavioral performance of zebrafish continuously throughout development, from larva to adult. We found that learning improves throughout development, starts reliably around week 3, and reaches adult performance levels at week 6. Adult fish quickly learned to perform perfectly, and the expression of the learned behavior is manifestly controlled by vision. The memory is behaviorally expressed in adults for at least 6 h and retrievable for at least 12 h.


Asunto(s)
Condicionamiento Clásico/fisiología , Condicionamiento Operante/fisiología , Aprendizaje/fisiología , Pez Cebra/fisiología , Animales
14.
Nat Neurosci ; 26(5): 765-773, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095397

RESUMEN

Animals generate neural representations of their heading direction. Notably, in insects, heading direction is topographically represented by the activity of neurons in the central complex. Although head direction cells have been found in vertebrates, the connectivity that endows them with their properties is unknown. Using volumetric lightsheet imaging, we find a topographical representation of heading direction in a neuronal network in the zebrafish anterior hindbrain, where a sinusoidal bump of activity rotates following directional swims of the fish and is otherwise stable over many seconds. Electron microscopy reconstructions show that, although the cell bodies are located in a dorsal region, these neurons arborize in the interpeduncular nucleus, where reciprocal inhibitory connectivity stabilizes the ring attractor network that encodes heading. These neurons resemble those found in the fly central complex, showing that similar circuit architecture principles may underlie the representation of heading direction across the animal kingdom and paving the way to an unprecedented mechanistic understanding of these networks in vertebrates.


Asunto(s)
Neuronas , Pez Cebra , Animales , Neuronas/fisiología
15.
Curr Biol ; 33(18): 3911-3925.e6, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37689065

RESUMEN

In many brain areas, neuronal activity is associated with a variety of behavioral and environmental variables. In particular, neuronal responses in the zebrafish hindbrain relate to oculomotor and swimming variables as well as sensory information. However, the precise functional organization of the neurons has been difficult to unravel because neuronal responses are heterogeneous. Here, we used dimensionality reduction methods on neuronal population data to reveal the role of the hindbrain in visually driven oculomotor behavior and swimming. We imaged neuronal activity in zebrafish expressing GCaMP6s in the nucleus of almost all neurons while monitoring the behavioral response to gratings that rotated with different speeds. We then used reduced-rank regression, a method that condenses the sensory and motor variables into a smaller number of "features," to predict the fluorescence traces of all ROIs (regions of interest). Despite the potential complexity of the visuo-motor transformation, our analysis revealed that a large fraction of the population activity can be explained by only two features. Based on the contribution of these features to each ROI's activity, ROIs formed three clusters. One cluster was related to vergent movements and swimming, whereas the other two clusters related to leftward and rightward rotation. Voxels corresponding to these clusters were segregated anatomically, with leftward and rightward rotation clusters located selectively to the left and right hemispheres, respectively. Just as described in many cortical areas, our analysis revealed that single-neuron complexity co-exists with a simpler population-level description, thereby providing insights into the organization of visuo-motor transformations in the hindbrain.


Asunto(s)
Rombencéfalo , Pez Cebra , Animales , Pez Cebra/fisiología , Rotación , Rombencéfalo/fisiología , Encéfalo/fisiología , Natación
16.
Nat Neurosci ; 26(10): 1775-1790, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37667039

RESUMEN

The mesencephalic locomotor region (MLR) is a brain stem area whose stimulation triggers graded forward locomotion. How MLR neurons recruit downstream vsx2+ (V2a) reticulospinal neurons (RSNs) is poorly understood. Here, to overcome this challenge, we uncovered the locus of MLR in transparent larval zebrafish and show that the MLR locus is distinct from the nucleus of the medial longitudinal fasciculus. MLR stimulations reliably elicit forward locomotion of controlled duration and frequency. MLR neurons recruit V2a RSNs via projections onto somata in pontine and retropontine areas, and onto dendrites in the medulla. High-speed volumetric imaging of neuronal activity reveals that strongly MLR-coupled RSNs are active for steering or forward swimming, whereas weakly MLR-coupled medullary RSNs encode the duration and frequency of the forward component. Our study demonstrates how MLR neurons recruit specific V2a RSNs to control the kinematics of forward locomotion and suggests conservation of the motor functions of V2a RSNs across vertebrates.


Asunto(s)
Mesencéfalo , Pez Cebra , Animales , Larva , Mesencéfalo/fisiología , Locomoción/fisiología , Neuronas/fisiología , Médula Espinal/fisiología , Estimulación Eléctrica
17.
Nat Neurosci ; 25(3): 280-284, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241802

RESUMEN

Many oligodendrocyte precursor cells (OPCs) do not differentiate to form myelin, suggesting additional roles of this cell population. The zebrafish optic tectum contains OPCs in regions devoid of myelin. Elimination of these OPCs impaired precise control of retinal ganglion cell axon arbor size during formation and maturation of retinotectal connectivity and degraded functional processing of visual stimuli. Therefore, OPCs fine-tune neural circuits independently of their canonical role to make myelin.


Asunto(s)
Células Precursoras de Oligodendrocitos , Animales , Axones/fisiología , Diferenciación Celular/fisiología , Vaina de Mielina , Oligodendroglía/metabolismo , Colículos Superiores/fisiología , Pez Cebra
18.
Curr Biol ; 32(1): 176-189.e5, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34822765

RESUMEN

All animals need to differentiate between exafferent stimuli, which are caused by the environment, and reafferent stimuli, which are caused by their own movement. In the case of mechanosensation in aquatic animals, the exafferent inputs are water vibrations in the animal's proximity, which need to be distinguishable from the reafferent inputs arising from fluid drag due to locomotion. Both of these inputs are detected by the lateral line, a collection of mechanosensory organs distributed along the surface of the body. In this study, we characterize in detail how hair cells-the receptor cells of the lateral line-in zebrafish larvae discriminate between such reafferent and exafferent signals. Using dye labeling of the lateral line nerve, we visualize two parallel descending inputs that can influence lateral line sensitivity. We combine functional imaging with ultra-structural EM circuit reconstruction to show that cholinergic signals originating from the hindbrain transmit efference copies (copies of the motor command that cancel out self-generated reafferent stimulation during locomotion) and that dopaminergic signals from the hypothalamus may have a role in threshold modulation, both in response to locomotion and salient stimuli. We further gain direct mechanistic insight into the core components of this circuit by loss-of-function perturbations using targeted ablations and gene knockouts. We propose that this simple circuit is the core implementation of mechanosensory reafferent suppression in these young animals and that it might form the first instantiation of state-dependent modulation found at later stages in development.


Asunto(s)
Sistema de la Línea Lateral , Pez Cebra , Animales , Larva , Sistema de la Línea Lateral/fisiología , Locomoción/fisiología , Rombencéfalo , Pez Cebra/fisiología
19.
Nat Commun ; 12(1): 6694, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795244

RESUMEN

Animals must adapt their behavior to survive in a changing environment. Behavioral adaptations can be evoked by two mechanisms: feedback control and internal-model-based control. Feedback controllers can maintain the sensory state of the animal at a desired level under different environmental conditions. In contrast, internal models learn the relationship between the motor output and its sensory consequences and can be used to recalibrate behaviors. Here, we present multiple unpredictable perturbations in visual feedback to larval zebrafish performing the optomotor response and show that they react to these perturbations through a feedback control mechanism. In contrast, if a perturbation is long-lasting, fish adapt their behavior by updating a cerebellum-dependent internal model. We use modelling and functional imaging to show that the neuronal requirements for these mechanisms are met in the larval zebrafish brain. Our results illustrate the role of the cerebellum in encoding internal models and how these can calibrate neuronal circuits involved in reactive behaviors depending on the interactions between animal and environment.


Asunto(s)
Cerebelo/fisiología , Retroalimentación Fisiológica/fisiología , Retroalimentación Sensorial/fisiología , Pez Cebra/fisiología , Adaptación Fisiológica/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/fisiología , Cerebelo/citología , Humanos , Larva/genética , Larva/fisiología , Aprendizaje/fisiología , Neuronas/fisiología , Pez Cebra/genética
20.
Elife ; 102021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33739286

RESUMEN

Three-dimensional (3D) digital brain atlases and high-throughput brain-wide imaging techniques generate large multidimensional datasets that can be registered to a common reference frame. Generating insights from such datasets depends critically on visualization and interactive data exploration, but this a challenging task. Currently available software is dedicated to single atlases, model species or data types, and generating 3D renderings that merge anatomically registered data from diverse sources requires extensive development and programming skills. Here, we present brainrender: an open-source Python package for interactive visualization of multidimensional datasets registered to brain atlases. Brainrender facilitates the creation of complex renderings with different data types in the same visualization and enables seamless use of different atlas sources. High-quality visualizations can be used interactively and exported as high-resolution figures and animated videos. By facilitating the visualization of anatomically registered data, brainrender should accelerate the analysis, interpretation, and dissemination of brain-wide multidimensional data.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Neuroimagen/métodos , Encéfalo , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA