Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 14(1): e1007177, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29377885

RESUMEN

Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Polaridad Celular , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Polaridad Celular/genética , Retroalimentación Fisiológica/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Proteínas de Transporte de Membrana/genética , Análisis por Micromatrices , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
2.
Proc Natl Acad Sci U S A ; 111(50): E5471-9, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25468974

RESUMEN

Auxin polar transport, local maxima, and gradients have become an important model system for studying self-organization. Auxin distribution is regulated by auxin-dependent positive feedback loops that are not well-understood at the molecular level. Previously, we showed the involvement of the RHO of Plants (ROP) effector INTERACTOR of CONSTITUTIVELY active ROP 1 (ICR1) in regulation of auxin transport and that ICR1 levels are posttranscriptionally repressed at the site of maximum auxin accumulation at the root tip. Here, we show that bimodal regulation of ICR1 levels by auxin is essential for regulating formation of auxin local maxima and gradients. ICR1 levels increase concomitant with increase in auxin response in lateral root primordia, cotyledon tips, and provascular tissues. However, in the embryo hypophysis and root meristem, when auxin exceeds critical levels, ICR1 is rapidly destabilized by an SCF(TIR1/AFB) [SKP, Cullin, F-box (transport inhibitor response 1/auxin signaling F-box protein)]-dependent auxin signaling mechanism. Furthermore, ectopic expression of ICR1 in the embryo hypophysis resulted in reduction of auxin accumulation and concomitant root growth arrest. ICR1 disappeared during root regeneration and lateral root initiation concomitantly with the formation of a local auxin maximum in response to external auxin treatments and transiently after gravitropic stimulation. Destabilization of ICR1 was impaired after inhibition of auxin transport and signaling, proteasome function, and protein synthesis. A mathematical model based on these findings shows that an in vivo-like auxin distribution, rootward auxin flux, and shootward reflux can be simulated without assuming preexisting tissue polarity. Our experimental results and mathematical modeling indicate that regulation of auxin distribution is tightly associated with auxin-dependent ICR1 levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Arabidopsis/genética , Transporte Biológico/fisiología , Cartilla de ADN/genética , Fluorescencia , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Plantas Modificadas Genéticamente , Proteolisis , Transducción de Señal/fisiología
3.
New Phytol ; 212(2): 497-509, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27322763

RESUMEN

Redirection of intercellular auxin fluxes via relocalization of the PIN-FORMED 3 (PIN3) and PIN7 auxin efflux carriers has been suggested to be necessary for the root gravitropic response. Cytokinins have also been proposed to play a role in controlling root gravitropism, but conclusive evidence is lacking. We present a detailed study of the dynamics of root bending early after gravistimulation, which revealed a delayed gravitropic response in transgenic lines with depleted endogenous cytokinins (Pro35S:AtCKX) and cytokinin signaling mutants. Pro35S:AtCKX lines, as well as a cytokinin receptor mutant ahk3, showed aberrations in the auxin response distribution in columella cells consistent with defects in the auxin transport machinery. Using in vivo real-time imaging of PIN3-GFP and PIN7-GFP in AtCKX3 overexpression and ahk3 backgrounds, we observed wild-type-like relocalization of PIN proteins in the columella early after gravistimulation, with gravity-induced relocalization of PIN7 faster than that of PIN3. Nonetheless, the cellular distribution of PIN3 and PIN7 and expression of PIN7 and the auxin influx carrier AUX1 was affected in AtCKX overexpression lines. Based on the retained cytokinin sensitivity in pin3 pin4 pin7 mutant, we propose the AUX1-mediated auxin transport rather than columella-located PIN proteins as a target of endogenous cytokinins in the control of root gravitropism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Citocininas/farmacología , Gravitropismo/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Arabidopsis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Gravitación , Proteínas Fluorescentes Verdes/metabolismo , Meristema/efectos de los fármacos , Meristema/fisiología , Modelos Biológicos , Raíces de Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
4.
Biomolecules ; 12(5)2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35625538

RESUMEN

The physical stresses during cryopreservation affect stem cell survival and further proliferation. To minimize or prevent cryoinjury, cryoprotective agents (CPAs) are indispensable. Despite the widespread use of 10% dimethyl sulfoxide (DMSO), there are concerns about its potential adverse effects. To bypass those effects, combinations of CPAs have been investigated. This study aimed to verify whether high-molecular-hyaluronic acid (HMW-HA) serves as a cryoprotectant when preserving human mesenchymal stem cells (hMSCs) to reduce the DMSO concentration in the cryopreservation medium. We studied how 0.1% or 0.2% HMW-HA combined with reduced DMSO concentrations (from 10% to 5%, and 3%) affected total cell count, viability, immunophenotype, and differentiation potential post-cryopreservation. Immediately after cell revival, the highest total cell count was observed in 10% DMSO-stored hMSC. However, two weeks after cell cultivation an increased cell count was seen in the HMW-HA-stored groups along with a continued increase in hMSCs stored using 3% DMSO and 0.1% HMW-HA. The increased total cell count corresponded to elevated expression of stemness marker CD49f. The HA-supplemented cryomedium did not affect the differential potential of hMSC. Our results will participate in producing a ready-to-use product for cryopreservation of mesenchymal stem cells.


Asunto(s)
Dimetilsulfóxido , Células Madre Mesenquimatosas , Criopreservación/métodos , Crioprotectores/farmacología , Medios de Cultivo , Dimetilsulfóxido/farmacología , Congelación , Humanos
5.
Nat Commun ; 11(1): 3508, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665554

RESUMEN

Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Pisum sativum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Pisum sativum/genética , Reguladores del Crecimiento de las Plantas/metabolismo
6.
Science ; 370(6516): 550-557, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33122378

RESUMEN

Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization.


Asunto(s)
Arabidopsis/enzimología , Ácidos Indolacéticos/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA