Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Environ Res ; 258: 119404, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38880323

RESUMEN

Adsorption is a promising way to remove persistent organic pollutants (POPs), a major environmental issue. With their high porosity and vast surface areas, MOFs are suited for POP removal due to their excellent adsorption capabilities. This review addresses the intricate principles of MOF-mediated adsorption and helps to future attempts to mitigate organic water pollution. This review examines the complicated concepts of MOF-mediated adsorption, including MOF synthesis methodologies, adsorption mechanisms, and material tunability and adaptability. MOFs' ability to adsorb POPs via electrostatic forces, acid-base interactions, hydrogen bonds, and pi-pi interactions is elaborated. This review demonstrates its versatility in eliminating many types of contaminants. Functionalizing, adding metal nanoparticles, or changing MOFs after they are created can improve their performance and remove contaminants. This paper also discusses MOF-based pollutant removal issues and future prospects, including adsorption capacity, selectivity, scale-up for practical application, stability, and recovery. These obstacles can be overcome by rationally designing MOFs, developing composite materials, and improving material production and characterization. Overall, MOF technology research and innovation hold considerable promise for environmental pollution solutions and sustainable remediation. Desorption and regeneration in MOFs are also included in the review, along with methods for improving pollutant removal efficiency and sustainability. Case studies of effective MOF regeneration and scaling up for practical deployment are discussed, along with future ideas for addressing these hurdles.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Orgánicos Persistentes , Adsorción , Estructuras Metalorgánicas/química , Contaminantes Orgánicos Persistentes/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis
2.
Sensors (Basel) ; 22(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746336

RESUMEN

Throughout service, damage can arise in the structure of buildings; hence, their dynamic testing becomes essential to verify that such buildings possess sufficient strength to withstand disturbances, particularly in the event of an earthquake. Dynamic testing, being uneconomical, requires proof of concept; for this, a model of a structure can be dynamically tested, and the results are used to update its finite element model. This can be used for damage detection in the prototype and aids in predicting its behavior during an earthquake. In this instance, a wireless MEMS accelerometer was used, which can measure the vibration signals emanating from the building and transfer these signals to a remote workstation. The base of the structure is excited using a shaking table to induce an earthquake-like situation. Four natural frequencies have been considered and six different types of damage conditions have been identified in this work. For each damage condition, the experimental responses are measured and the finite element model is updated using the Berman and Nagy method. It is seen that the updated models can predict the dynamic responses of the building accurately. Thus, depending on these responses, the damage condition can be identified by using the updated finite element models.


Asunto(s)
Terremotos , Vibración , Análisis de Elementos Finitos
3.
Sensors (Basel) ; 22(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35062478

RESUMEN

Fused deposition modelling (FDM)-based 3D printing is a trending technology in the era of Industry 4.0 that manufactures products in layer-by-layer form. It shows remarkable benefits such as rapid prototyping, cost-effectiveness, flexibility, and a sustainable manufacturing approach. Along with such advantages, a few defects occur in FDM products during the printing stage. Diagnosing defects occurring during 3D printing is a challenging task. Proper data acquisition and monitoring systems need to be developed for effective fault diagnosis. In this paper, the authors proposed a low-cost multi-sensor data acquisition system (DAQ) for detecting various faults in 3D printed products. The data acquisition system was developed using an Arduino micro-controller that collects real-time multi-sensor signals using vibration, current, and sound sensors. The different types of fault conditions are referred to introduce various defects in 3D products to analyze the effect of the fault conditions on the captured sensor data. Time and frequency domain analyses were performed on captured data to create feature vectors by selecting the chi-square method, and the most significant features were selected to train the CNN model. The K-means cluster algorithm was used for data clustering purposes, and the bell curve or normal distribution curve was used to define individual sensor threshold values under normal conditions. The CNN model was used to classify the normal and fault condition data, which gave an accuracy of around 94%, by evaluating the model performance based on recall, precision, and F1 score.

4.
Environ Monit Assess ; 194(8): 576, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821153

RESUMEN

Natural and anthropogenic pollution influence the general hydrochemistry of freshwater sources. Effective management strategies need an accurate evaluation of the water quality parameters, and inferences extracted from the data should be based on the most appropriate statistical methods. Conventional water quality indices (WQI) being related to a large number of water quality parameters results in significant variability and analytical costs. The focus of this study was to develop a remodeled water quality index (WQImin) based on the localized trends in water quality and demonstrate it to understand water quality variations of Dal Lake (a freshwater lake in the Himalayan region). Spatio-temporal changes and trends of 14 water quality parameters were investigated that were arbitrated from the samples collected at 11 sampling locations during the water quality monitoring across the Dal Lake from September 2017 to August 2020. The results signify that the general mean WQI value was 81.9, and seasonal average WQI values ranges from 79.44 to 84.55. The water quality showed seasonal variance, with lowest values in summer, succeeded by autumn and winter, and highest in spring. Moreover, the results from stepwise multiple regression analysis indicated that the WQImin significantly correlates with six water quality parameters (ammonia, dissolved oxygen, chemical oxygen demand, temperature, turbidity, and nitrate) in Dal Lake. The WQImin model predicted the water quality of the Dal Lake with a coefficient of determination (R2) value of 0.96, root mean square error (RMSE) value of 4.1, and percentage error (PE) of 5.3%. The developed WQImin model can be applied as a cost-effective and efficacious approach to determine the water quality of fresh surface water bodies.


Asunto(s)
Lagos , Calidad del Agua , Monitoreo del Ambiente/métodos , Nitratos , Estaciones del Año
5.
Environ Res ; 180: 108857, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31727340

RESUMEN

Heterostructured α-Bismuth zinc oxide (α-Bi2O3-ZnO) photocatalyst was fabricated by a facile and cost-effective, ultrasound assisted chemical precipitation method followed by hydrothermal growth technique. As synthesized α-Bi2O3-ZnO photocatalyst showed enhanced photocatalytic performance for the MB dye degradation in contrast to pure ZnO and α-Bi2O3. Light emitting diodes (UV-LED) were used in the experimental setup, which has several advantages over conventional lamps like wavelength selectivity, high efficacy, less power consumption, long lifespan, no disposal problem, no warming-up time, compactness, easy and economic installation. XRD study confirmed the presence of both the lattice phases i.e. monoclinic and hexagonal wurtzite phase corresponding to α-Bi2O3 and ZnO in the α-Bi2O3-ZnO composite photocatalyst. FESEM images showed that α-Bi2O3-ZnO photocatalyst is composed of dumbbell like structures of ZnO with breadth ranging 4-5 µm and length ranging from 10 to 11 µm respectively. It was observed that α-Bi2O3 nanoparticles were attached on the ZnO surface and were in contact with each other. Low recombination rate of photo-induced electron-hole pairs, due to the migration of electrons and holes between the photocatalyst could be responsible for the 100% photocatalytic efficiency of α-Bi2O3-ZnO composite. In addition, photocatalyst was also observed to show the excellent antimicrobial activity with 1.5 cm zone of inhibition for 1 mg L-1 dose, against the human pathogenic bacteria (S. aureus).


Asunto(s)
Antiinfecciosos , Azul de Metileno , Óxido de Zinc , Bismuto , Catálisis , Staphylococcus aureus , Zinc
6.
Technol Soc ; 62: 101305, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32834232

RESUMEN

Indeed, the scientific milestones set by the ever-emerging three-dimensional printing (3DP) technologies are tremendous. Till now, the innovative 3DP technologies have benefitted the aerospace, automobile, textile, pharmaceutical, and biomedical sectors by developing pre-requisite designed and customized performance standards of the end-user products. As the scientific world, at this moment, is expediting efforts to fight against the highly damaging novel coronavirus (COVID-19) pandemic, the 3DP technologies are facilitating creative solutions in terms of personal protective equipment (PPE), medical equipment (such as ventilators and other respiratory devices), and other health and welfare tools to aid the personal hygiene as well as safe environment for humans by restricting the communication of risks. Various sources (including journal articles, news articles, white papers of the government and other non-profit organizations, commercial enterprises, as well as academic institutions have been reviewed for the collection of the information relevant to COVID-19 and 3DP. This communication presents the recent applications of the 3DP technologies aiding in developing innovative products designed to save the lives of millions of people around the world. Moreover, the potential of 3DP technologies in developing test swabs and controlled medicines has been highlighted. The literature reviewed in the present study indicated that the fused filament fabrication (FFF) is one of the most preferred technologies and contribute about 62% in the overall production of the protective gears developed through overall class of 3DP.

7.
Neurol India ; 67(1): 163-168, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30860117

RESUMEN

PURPOSE: Long standing temporal lobe epilepsy (TLE) causes cerebral insult and results in elevated brain injury biomarkers, S100b and neuron specific enolase (NSE). Surgery for TLE, has the potential to cause additional cerebral insult. Dexmedetomidine is postulated to have neuroprotective effects. The aim of this study was to assess the effect of intraoperative dexmedetomidine on S100b and NSE during TLE surgery. MATERIALS AND METHODS: 19 consenting adult patients with TLE undergoing anteromedial temporal lobectomy were enrolled and divided into two groups. Patients in Group D (n = 9) received dexmedetomidine whereas patients in Group C (n = 10) received saline as placebo in addition to the standard anaesthesia technique. Blood samples of these patients were drawn, before induction of anaesthesia, at the end of surgery, as well at 24 hours and 48 hours postoperatively, and analysed for serum S100b and NSE. RESULTS: The demographic and clinical profile was comparable in both the groups. The baseline S100b in group C and group D was 66.7 ± 26.5 pg/ml and 34.3 ± 21.7 pg/ml (P = 0.013) respectively. After adjustment for the baseline, the overall value of S100b was 71.0 ± 39.8 pg/ml and 40.5 ± 22.5 pg/ml (P = 0.002) in the control and study group, respectively. The values of S100b (79.3 ± 53.6 pg/ml) [P = 0.017] were highest at 24 hours postoperatively. The mean value of NSE in the control and study group was 32.8 ± 43.4 ng/ml (log 3.0 ± 0.1) and 13.51 ± 9.12 ng/ml (log 2.42 ± 0.60), respectively. The value of NSE in both the groups was comparable at different time points. CONCLUSIONS: Lower perioperative values of S100b were observed in patients who received intraoperative dexmedetomidine. Dexmedetomidine may play a role in cerebroprotection during epilepsy surgery.


Asunto(s)
Dexmedetomidina/uso terapéutico , Epilepsia del Lóbulo Temporal/cirugía , Fármacos Neuroprotectores/uso terapéutico , Procedimientos Neuroquirúrgicos/métodos , Adolescente , Adulto , Biomarcadores/sangre , Método Doble Ciego , Epilepsia del Lóbulo Temporal/sangre , Femenino , Humanos , Masculino , Fosfopiruvato Hidratasa/sangre , Subunidad beta de la Proteína de Unión al Calcio S100/sangre , Resultado del Tratamiento , Adulto Joven
8.
Sci Rep ; 14(1): 15453, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965308

RESUMEN

Present study has been conducted to characterize the Mg alloy namely AZ31-based composite joined by Friction stir processing (FSP) technique. This study deals with the effect of single and double passes in FSP of AZ31 Mg alloy. The single pass run in FSP is followed at tool rotation speed (N) of 1000 to 1400 rpm. Also, the double pass run in FSP was followed at these speeds without using reinforcements. The feedstock particles namely SiC, Al2O3, Cr, and Si powders were used in fabrication process. The hardness, impact strength, and tensile strength characteristics were assessed in the stir region zone, and the results indicated significant improvement in these properties. The highest values of mechanical strength were seen in the FSPed area with N = 1000 rpm at a constant transverse speed (r) of 40 mm/min. Also, the tensile strength of the two passes FSPed plates is much higher than that of the single section without any reinforcement, as revealed in previous study also. The Scanning electron microscopy (SEM) analysis is done at two different magnifications for the Silicon carbide, Alumina, Chromium, and Silicon powder reinforced composites fabricated at speed of 1000 rpm. The microstructure shows that reinforced particles were uniform dispersed into FSPed region and agglomerated with Mg matrix. Si powder produces finer microstructure as compare to SiC, Al2O3, Cr. FSP decreases the grain size of processed material. Optical Microscopy results revealed that the reinforcement particle produced a homogenous microstructure and, a refined grain and equally dispersed in matrix material without split to the particle.

9.
Work ; 79(2): 765-774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640184

RESUMEN

BACKGROUND: Textile-sizing mill workers are exposed to various hazards in the sizing units during their working hours and are at risk of acquiring lung impairments due to the usage of sizing chemicals in the sizing process. OBJECTIVE: The main aim of this study is to assess the influence of cotton dust and sizing agents on lung function and breathing difficulties among Indian textile sizing mill workers. METHODS: This cross-sectional study was carried out at a textile-sizing mill from August 2022 to September 2022. A modified questionnaire based American Thoracic Society's standard was used to assess respiratory symptoms among sizing mill workers and the pulmonary function test was conducted Spirometry. The chi-square test was used to find the difference between respiratory symptoms and the t-test was used to find the difference between spirometric parameters. RESULTS: Textile sizing mill workers showed significant (P < 0.0001) decline in peak expiratory flow rate, forced vital capacity (FVC), ratio of FEV1 and forced vital capacity, and forced expiratory volume in 1 s (FEV1). There was an association between symptoms and duration of exposure to pulmonary abnormality. Sizing mill workers showed a significant decline in lung functions and an increase in pulmonary symptoms. As the service duration of exposure in terms of years increased, respiratory symptoms increased and spirometric abnormality also increased. CONCLUSION: This study confirms that sizing agents such as polyvinyl alcohol (PVA), emulsifier, wax, carboxymethyl cellulose (CMC), and starch used in sizing mills are also responsible for respiratory illness and lung impairment among textile workers.


Asunto(s)
Exposición Profesional , Pruebas de Función Respiratoria , Industria Textil , Humanos , Estudios Transversales , Masculino , Adulto , India/epidemiología , Exposición Profesional/efectos adversos , Femenino , Persona de Mediana Edad , Espirometría , Encuestas y Cuestionarios , Textiles , Fibra de Algodón , Polvo , Capacidad Vital , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/etiología , Volumen Espiratorio Forzado
10.
Sci Rep ; 14(1): 20272, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217240

RESUMEN

There has been an intense surge in interest in the search for alternative sources of petroleum fuels in the modern world as a result of the inflation of fuel prices and the historic supply gap. When compared to petroleum fuels, biodiesel is becoming an increasingly valuable option due to the fact that it produces less emissions and provides the almost same amount of energy. In point of fact, the prime aim of this work is to explore the possibility of utilizing biodiesel derived from lemongrass oil and including dibutyl ether as an additive for the test diesel engine operating on varied compression ratios. The findings showed that the best operating settings are a 17.5 compression ratio with a blend of 30% biodiesel and 70% diesel fuel. At greater loads, brake thermal efficiency is lower than that of diesel engines. Lower loads result in lower specific fuel usage. Mechanical efficiency at higher loads is highest in the B30 blend, but emission metrics such as CO, CO2, HC, and NOx were reduced with the inclusion of an additive, though HC rose with higher loads of lemongrass oil biodiesel blends. When compared to the B30 biodiesel blend with various composition additives, the B30 + 4% additive has the highest efficiency at the fourth load in terms of both brake power and mechanical efficiency.

11.
Indian J Orthop ; 58(6): 705-715, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38812869

RESUMEN

Objectives: The acetabular cup design plays a critical role in reducing contact stress between femur head acetabular cup. Many studies used ellipsoidal and spheroidal geometry in acetabular cup design to effectively reduce contact stress. The present study focuses on elevated acetabular cup rim with round corner design to reduce contact stress with round corner geometry. Methods: The cobalt chromium femur head and cup are considered for finite element (FE) model of hip resurfacing. The gait loads of routine activities of humans like normal walking, stair ascending and descending and sitting down and getting up gait activities are applied to the developed 3D FE model. Five microseparations of 0.5, 1, 1.5, 2 and 2.5 mm are considered in the present study. The acetabular cup inclination angle considered for this study are 35°, 45°, 55°, 65° and 75°. The contact stress and von Mises stress plot for each gait activities under these microseparations are analyzed for betterment of longevity of implants. Results: Overall elevated cup rim design helped in reducing contact stress to a greater extent than conventional cup with different geometries. Also, the predicted von Mises stress for all the parameters considered in the current study are well within the yield strength of CoCr material. Therefore, elevated cup rim could be used as a better alternative to spline and, ellipsoidal and circular geometries of cup.

12.
Heliyon ; 10(12): e32210, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975212

RESUMEN

Control of a bioprocess is a challenging task mainly due to the nonlinearity of the process, the complex nature of microorganisms, and variations in critical parameters such as temperature, pH, and agitator speed. Generally, the optimum values chosen for critical parameters during Escherichia coli (E.coli) K-12fed-batch fermentation are37 ᵒC for temperature, 7 for pH, and 35 % for Dissolved Oxygen (DO). The objective of this research is to enhance biomass concentration while minimizing energy consumption. To achieve this, an Event-Triggered Control (ETC) scheme based on feedback-feed forward control is proposed. The ETC system dynamically adjusts the substrate feed rate in response to variations in critical parameters. We compare the performance of classical Proportional Integral (PI) controllers and advanced Model Predictive Control (MPC) controllers in terms of bioprocess yield. Initially, the data are collected from a laboratory-scaled 3L bioreactor setup under fed-batch operating conditions, and data-driven models are developed using system identification techniques. Then, classical Proportional Integral (PI) and advanced Model Predictive Control (MPC) based feedback controllers are developed for controlling the yield of bioprocess by manipulating substrate flow rate, and their performances are compared. PI and MPC-based Event Triggered Feed Forward Controllers are designed to increase the yield and to suppress the effect of known disturbances due to critical parameters. Whenever there is a variation in the value of a critical parameter, it is considered an event, and ETC initiates a control action by manipulating the substrate feed rate. PI and MPC-based ETC controllers are developed in simulation, and their closed-loop performances are compared. It is observed that the Integral Square Error (ISE) is notably minimized to 4.668 for MPC with disturbance and 4.742 for MPC with Feed Forward Control. Similarly, the Integral Absolute Error (IAE) reduces to 2.453 for MPC with disturbance and 0.8124 for MPC with Feed Forward Control. The simulation results reveal that the MPC-based ETC control scheme enhances the biomass yield by 7 %, and this result is verified experimentally. This system dynamically adjusts the substrate feed rate in response to variations in critical parameters, which is a novel approach in the field of bioprocess control. Also, the proposed control schemes help reduce the frequency of communication between controller and actuator, which reduces power consumption.

13.
Int J Biol Macromol ; 277(Pt 1): 133816, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39002911

RESUMEN

Diabetic vascular complication including diabetic retinopathy is a major morbidity in Saudia Arabia. The polyol pathway aka aldose reductase (AR) pathway has gained significant association with diabetic retinopathy with regard to chronically enhanced glucose metabolism. Considerable research has been put forth to develop more effective therapeutic strategies to overcome the overwhelming challenges of vascular complications associated with diabetes. In this regard, constituents of Cichorium intybus can offer strong AR inhibitory potential because of their strong antidiabetic properties. Therefore, aim of this study was to investigate the AR inhibitory as well as antiglycation potential of C. intybus extract/compounds. The preliminary in vitro results showed that methanolic extract of C. intybus could significantly inhibit AR enzyme and advanced glycation end product formation. Eventually, based on previous studies and reviews, we selected one hundred fifteen C. intybus root constituents and screened them through Lipinski's rule of five and ADMET analysis. Later, after molecular docking analysis of eight compounds, five best were selected for molecular dynamics simulation to deduce their binding affinity with the AR enzyme. Finally, three out of five compounds were further tested in vitro for their AR inhibitory potential and antiglycation properties. Enzyme assay and kinetic studies showed that all the three tested compounds were having potent AR inhibitory properties, although to a lesser extent than ellagic acid and tolrestat. Similarly, kaempferol showed strong antiglycation property equivalent to ellagic acid, but greater than aminoguanidine. Intriguingly, significant reduction in sorbitol accumulation in RBCs by the tested compounds substantiated strong AR inhibition by these compounds. Moreover, decrease in sorbitol accumulation under high glucose environment also signifies the potential application of these compounds in diabetic retinopathy and other vascular complications. Thus, in sum, the in silico and in vitro studies combinedly showed that C. intybus root is a treasure for therapeutic compounds and can be explored further for drug development against diabetic retinopathy.


Asunto(s)
Aldehído Reductasa , Cichorium intybus , Retinopatía Diabética , Inhibidores Enzimáticos , Extractos Vegetales , Humanos , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/metabolismo , Cichorium intybus/química , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación/efectos de los fármacos , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/farmacología , Fitoquímicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
14.
Sci Rep ; 14(1): 23303, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375424

RESUMEN

The present work focuses on suggesting Gr as a valuable self-lubricating reinforcement for hybrid composite samples and offering a minimum wear rate for sliding pairs with fewer mechanical surface defects at the same time. A series of samples were fabricated using the route by stir casting method considering B4C and Gr as the two reinforcements. The morphology of the sample has been studied using the X-ray diffraction graphs, Energy dispersive X-ray analysis and Scanning electron imaging stating the homogeneity of reinforcement in various composite cast. The theoretical and experimental density of the series of samples has been studied and compared stating the low porosity of the samples fabricated. A maximum wear rate (Wr) of 0.351 × 10-4 mm3/m. was found for pure aluminium sample against EN31 steel disc with 0.053 as friction coefficient (µ). Wr was somehow seen to reduce up to 0.286 × 10-4 mm3/m for Al-B4C composite with µ of 0.48. For hybrid samples, the wear rate was further seen to improve to 0.187 × 10-4 mm3/m for Al-B4C and Gr 2.0% weight with µ of 0.38. Least Wr was found for composite having Gr 3.5% weight, of 0.149 × 10-4 mm3/m. with µ of 0.36. SEM images of the worn surface give evident results for delamination and crack formation on the pin face for the pure-Al sample. Taguchi-ANOVA analysis has been carried out showing the valid contribution of pin type, load and sliding speed on Wr and friction coefficient as the P-value lies below 0.05 for input parameters considering the 95% confidence level of the model developed. An F-value of 44.57 with R2 of 0.895 is developed for Wr model and an F-value of 54.2 with R2 of 0.934 for the µ model.

15.
Int J Biol Macromol ; 280(Pt 2): 135761, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306154

RESUMEN

Diabetes mellitus significantly increases mortality and morbidity rates due to complications like neuropathy and nephropathy. It also leads to retinopathy and cataract formation, which is a leading cause of vision disability. The polyol pathway emerges as a promising therapeutic target among the various pathways associated with diabetic complications. This review focuses on the development of natural and synthetic aldose reductase inhibitors (ARIs), along with recent discoveries in diabetic complication treatment. AR, pivotal in the polyol pathway converting glucose to sorbitol, plays a key role in secondary diabetes complications' pathophysiology. Understanding AR's function and structure lays the groundwork for improving ARIs to mitigate diabetic complications. New developments in ARIs open up exciting possibilities for treating diabetes-related complications. However, it is still challenging to get preclinical successes to clinical effectiveness because of things like differences in how the disease starts, drug specificity, and the complexity of the AR's structure. Addressing these challenges is crucial for developing targeted and efficient ARIs. Continued research into AR's structural features and specific ARIs is essential. Overcoming these challenges could revolutionize diabetic complication treatment, enhance patient outcomes, and reduce the global burden of diabetes-related mortality and morbidity.

16.
Sci Rep ; 14(1): 23694, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390017

RESUMEN

This research paper aims to optimize the TIG welding parameters to join dissimilar metals of AA5083 and AA7075 using the Taguchi technique. The TIG welding current and root gap of butt geometry configuration are considered input parameters, and welding characteristics such as tensile strength, 0.2% of yield strength, hardness, and impact energy are output responses. The base metals are joined according to the Taguchi L-09 design of experiments. The welded samples were inspected using the X-ray radiography method for internal defects. Tensile properties, hardness number, and impact energy of different welding coupons were evaluated by conducting the uni-axial testing, a Brinell hardness test, and an Izod impact test, respectively. A better weld strength of 224 MPa was observed at 210 A welding current, and the root gap of 1.5 mm was maintained. Better hardness and impact energy values were observed when the root gap of 1.5 mm and welding current of 220 A were maintained. The root gap is the primary factor influencing tensile strength enhancement, which accounts for 44.78% of the effect, followed by 40.5% welding current. Root gap is the parameter that affects the tensile properties, hardness number, and impact toughness the most. The findings of this paper suggest the optimal parameters for welding AA5083 and AA7075 dissimilar base metals, which are suitable for complex structures requiring both durability and resistance to harsh environments.

17.
Indian J Occup Environ Med ; 28(2): 163-169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114101

RESUMEN

This study aims to investigate the pulmonary functions and respiratory symptoms of workers in the neem oil extraction industry in Tamil Nadu, India, who are exposed to neem oil dust and chemicalsin their occupational environment. Fifty male workers from the exposed group and 50 male workers from the non-exposed group to neem dust and chemicals were investigated for this study. A modified respiratory assessment questionnaire based on the American Thoracic Society (ATS) standard and portable hand-held spirometry were used to assess their respiratory symptoms and pulmonary function. Respiratory symptoms such as coughing, sneezing, wheezing, and, nasal irritation are found to be higher in the exposed groups than in the controlled groups. The pulmonary function of exposed workers had doubled respiratory problems than the controlled groups, which indicates the impacts of dust and chemicals generated during neem oil extraction on workers' health. Forced expiratory volume in one second (FEV1)/forced vital capacity FVC)% was noted regarding the duration of exposure to neem oil dust (P < 0.001). Also, there was a high difference between the heavily exposed and the lightly exposed (P < 0.001). Hence, to mitigate these problems, the oil mill workers should be cautious and wear personal protection equipment during working hours, and it is recommended to have an exhaust ventilation system.

18.
Chem Asian J ; : e202400678, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218802

RESUMEN

The interplay of ESIPT+TICT mechanisms in 1,8-naphthalimide-hydroxyquinoline (NQ-OH) molecular rotor were reported for the near-IR 'turn-on' emission (λmax 600 nm) and ratiometric (A405nm/A345nm) absorbance-based detection of Al3+ ions in aqueous medium and live cells which were supported by NMR, IR and CV techniques. The limit of detection (LOD) for Al3+ ions is 100 nM and 14.57 nM. The self-assembled spherical aggregates of NQ-OH transformed into cuboidal aggregates upon coordination with Al3+ ions supported by microscopic and dynamic light scattering (DLS) techniques. The complex NQ-OH+Al3+ was further used for the secondary detection of F- ions in aqueous medium via displacement approach with LOD as low as 2.67 nM. A deeper study revealed that the NQ-OH is a solvatochromic dye. Probably, the NQ-OH either in the aggregated state or in the coordination state with Al3+ ions, showed an increase in the emission intensity at 600 nm due to inhibition of the ESIPT process and trigger of the TICT process. We have demonstrated the utility of NQ-OH for the detection of Al3+ ions and NQ-OH+Al3+ complex for the detection of F- ions in MCF7 live cells. We have also discussed the molecular docking studies of NQ-OH with acetylcholinesterase enzyme.

19.
Adv Healthc Mater ; : e2401525, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978444

RESUMEN

Lung cancer remains a major global health concern with high mortality rates and poor prognosis. Bridging the gap between the chemical and cellular understanding of cell-decorated biomimetic nanocomposites and their clinical translation is crucial for developing effective therapies. Nanocomposites show promise in targeted drug delivery and diagnostics, but their clinical application is hindered by biocompatibility and clearance issues. To overcome these challenges, biomimetic approaches utilizing cell membrane-coated nanomaterials emerge. By camouflaging nanomaterials with cell membranes, the biointerfaces are enhanced, and the inherent properties of the donor cell membranes are acquired. This review provides an overview of recent advancements on cell membrane-coated nanocomposites for lung cancer diagnosis and treatment. It discusses fabrication techniques, biomedical applications, challenges, and future prospects. The incorporation of cell membranes into nanocomposites holds potential for improved lung cancer therapy, but further development and refinement are needed for precise tumor targeting. Addressing the identified challenges will pave the way for clinical translation of these biomimetic nanoplatforms and advance lung cancer diagnosis and treatment.

20.
Sci Rep ; 14(1): 16293, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009787

RESUMEN

In the present work, we report on theoretical studies of thermodynamic properties, structural and dynamic stabilities, dependence of unit-cell parameters and elastic constants upon hydrostatic pressure, charge carrier effective masses, electronic and optical properties, contributions of interband transitions in the Brillouin zone of the novel Tl2HgGeSe4 crystal. The theoretical calculations within the framework of the density-functional perturbation theory (DFPT) are carried out employing different approaches to gain the best correspondence to the experimental data. The present theoretical data indicate the dynamical stability of the title crystal and they reveal that, under hydrostatic pressure, it is much more compressible along the a-axis than along the c-axis. Strikingly, the charge effective mass values ( m e ∗ and m h ∗ ) vary considerably when the high symmetry direction changes indicating a relative anisotropy of the charge-carrier's mobility. Furthermore, the Young modulus and compressibility are characterized by the maximum and minimum values ( E max and E min ) and ( ß max and ß min ) that are equal to (62.032 and 28.812) GPa and (13.672 and 6.7175) TPa-1, respectively. Additionally, we have performed calculations of the Raman spectra (RS) and reached a good correspondence with the experimental RS spectra of the Tl2HgGeSe4 crystal. The XPES associated to RS constitutes powerful techniques to explore the oxidized states of Se and Ge in Tl2HgGeSe4 system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA