Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Cell Biol ; 140(1): 143-52, 1998 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-9425162

RESUMEN

Drosophila melanogaster has proven to be a good model for understanding the physiology of ion channels. We identified two novel Drosophila DEG/ ENaC proteins, Pickpocket (PPK) and Ripped Pocket (RPK). Both appear to be ion channel subunits. Expression of RPK generated multimeric Na+ channels that were dominantly activated by a mutation associated with neurodegeneration. Amiloride and gadolinium, which block mechanosensation in vivo, inhibited RPK channels. Although PPK did not form channels on its own, it associated with and reduced the current generated by a related human brain Na+ channel. RPK transcripts were abundant in early stage embryos, suggesting a role in development. In contrast, PPK was found in sensory dendrites of a subset of peripheral neurons in late stage embryos and early larvae. In insects, such multiple dendritic neurons play key roles in touch sensation and proprioception and their morphology resembles human mechanosensory free nerve endings. These results suggest that PPK may be a channel subunit involved in mechanosensation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas Aferentes/fisiología , Canales de Sodio/biosíntesis , Amilorida/farmacología , Secuencia de Aminoácidos , Animales , Encéfalo/fisiología , Clonación Molecular , Drosophila melanogaster/embriología , Embrión no Mamífero/fisiología , Gadolinio/farmacología , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Neuronas Aferentes/efectos de los fármacos , Filogenia , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Canales de Sodio/química , Canales de Sodio/fisiología
2.
Neuron ; 21(6): 1435-41, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9883735

RESUMEN

Baroreceptor nerve endings detect acute fluctuations in arterial pressure. We tested the hypothesis that members of the DEG/ENaC family of cation channels, which are responsible for touch sensation in Caenorhabditis elegans, may be components of the baroreceptor mechanosensor. We found the gamma subunit of ENaC localized to the site of mechanotransduction in baroreceptor nerve terminals innervating the aortic arch and carotid sinus. A functional role for DEG/ENaC members was suggested by blockade of baroreceptor nerve activity and baroreflex control of blood pressure by an amiloride analog that inhibits DEG/ENaC channels. These data suggest that ENaC subunits may be components of the baroreceptor mechanotransducer and pave the way to a better definition of mechanisms responsible for blood pressure regulation and hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Proteínas de Caenorhabditis elegans , Músculo Liso Vascular/inervación , Terminaciones Nerviosas/fisiología , Ganglio Nudoso/fisiología , Presorreceptores/fisiología , Canales de Sodio/fisiología , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Aorta Torácica/inervación , Presión Sanguínea/efectos de los fármacos , Caenorhabditis elegans/fisiología , Seno Carotídeo/inervación , Canales Epiteliales de Sodio , Proteínas del Helminto/genética , Proteínas del Helminto/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Terminaciones Nerviosas/efectos de los fármacos , Presorreceptores/efectos de los fármacos , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/genética , Tacto
3.
Neuron ; 26(1): 133-41, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10798398

RESUMEN

Acidosis is associated with inflammation and ischemia and activates cation channels in sensory neurons. Inflammation also induces expression of FMRFamidelike neuropeptides, which modulate pain. We found that neuropeptide FF (Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe amide) and FMRFamide (Phe-Met-Arg-Phe amide) generated no current on their own but potentiated H+-gated currents from cultured sensory neurons and heterologously expressed ASIC and DRASIC channels. The neuropeptides slowed inactivation and induced sustained currents during acidification. The effects were specific; different channels showed distinct responses to the various peptides. These results suggest that acid-sensing ion channels may integrate multiple extracellular signals to modify sensory perception.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , FMRFamida/farmacología , Ganglios Espinales/efectos de los fármacos , Canales Iónicos/efectos de los fármacos , Proteínas del Tejido Nervioso/efectos de los fármacos , Neuropéptidos/farmacología , Oligopéptidos/farmacología , Canales Iónicos Sensibles al Ácido , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Canales de Sodio Degenerina , Canales Epiteliales de Sodio , FMRFamida/fisiología , Ganglios Espinales/fisiología , Humanos , Canales Iónicos/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuropéptidos/fisiología , Oligopéptidos/fisiología , Ratas , Xenopus
4.
Neuron ; 32(6): 1071-83, 2001 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-11754838

RESUMEN

Cation channels in the DEG/ENaC family are proposed to detect cutaneous stimuli in mammals. We localized one such channel, DRASIC, in several different specialized sensory nerve endings of skin, suggesting it might participate in mechanosensation and/or acid-evoked nociception. Disrupting the mouse DRASIC gene altered sensory transduction in specific and distinct ways. Loss of DRASIC increased the sensitivity of mechanoreceptors detecting light touch, but it reduced the sensitivity of a mechanoreceptor responding to noxious pinch and decreased the response of acid- and noxious heat-sensitive nociceptors. The data suggest that DRASIC subunits participate in heteromultimeric channel complexes in sensory neurons. Moreover, in different cellular contexts, DRASIC may respond to mechanical stimuli or to low pH to mediate normal touch and pain sensation.


Asunto(s)
Proteínas de la Membrana , Canales de Sodio/genética , Canales de Sodio/metabolismo , Tacto/fisiología , Canales Iónicos Sensibles al Ácido , Ácidos , Animales , Conducta Animal/fisiología , Calor , Mecanorreceptores/fisiología , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terminaciones Nerviosas/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas Aferentes/fisiología , Nociceptores/fisiología , Dolor/inducido químicamente , Dolor/fisiopatología , Técnicas de Placa-Clamp , Estimulación Física , Recombinación Genética , Estimulación Química
5.
J Hosp Infect ; 70(2): 142-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18723249

RESUMEN

Identification of a population at high risk for Clostridium difficile infection (CDI) would enable CDI prevention strategies to be designed. The purpose of this study was to create a clinical risk index that would predict those at risk for CDI. A CDI risk index was therefore developed, based on a cohort of hospital patients given broad-spectrum antibiotics, and divided into a development and validation cohort. Logistic regression equations helped identify significant predictors of CDI. A scoring algorithm for CDI risk was created using identified risk factors and collapsed to create four categories of CDI risk. The area under the receiver operating characteristic (aROC) curve was used to measure goodness-of-fit. Among 54 226 patients, 392 tested positive for C. difficile. Age 50-80 years [odds ratio (OR: 0.5; P<0.0116)], age >80 years (OR: 2.5; P<0.0001), haemodialysis (OR: 1.5; P=0.0227), non-surgical admission (OR: 2.2; P<0.0001) and increasing length of stay in the intensive care unit (OR: 2.1; P<0.0001) were significantly associated with CDI. A simple risk index using presence of significant variables was significantly associated with increasing risk for CDI in both development (OR: 3.57; P<0.001; aROC: 0.733) and validation (OR: 3.31; P<0.001; aROC: 0.712) cohorts. An OR-derived risk index did not perform as well as the simple risk index. This easily implemented risk index should allow stratification of patients into risk group categories for development of CDI and help fashion preventive strategies.


Asunto(s)
Antibacterianos/administración & dosificación , Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/epidemiología , Enterocolitis Seudomembranosa/epidemiología , Hospitalización , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/uso terapéutico , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/prevención & control , Estudios de Cohortes , Enterocolitis Seudomembranosa/tratamiento farmacológico , Enterocolitis Seudomembranosa/microbiología , Enterocolitis Seudomembranosa/prevención & control , Femenino , Hospitales de Enseñanza , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Análisis Multivariante , Oportunidad Relativa , Factores de Riesgo , Texas/epidemiología
6.
Genes Brain Behav ; 13(2): 179-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24256442

RESUMEN

Acid-sensing ion channels (ASICs) generate H(+) -gated Na(+) currents that contribute to neuronal function and animal behavior. Like ASIC1, ASIC2 subunits are expressed in the brain and multimerize with ASIC1 to influence acid-evoked currents and facilitate ASIC1 localization to dendritic spines. To better understand how ASIC2 contributes to brain function, we localized the protein and tested the behavioral consequences of ASIC2 gene disruption. For comparison, we also localized ASIC1 and studied ASIC1(-/-) mice. ASIC2 was prominently expressed in areas of high synaptic density, and with a few exceptions, ASIC1 and ASIC2 localization exhibited substantial overlap. Loss of ASIC1 or ASIC2 decreased freezing behavior in contextual and auditory cue fear conditioning assays, in response to predator odor and in response to CO2 inhalation. In addition, loss of ASIC1 or ASIC2 increased activity in a forced swim assay. These data suggest that ASIC2, like ASIC1, plays a key role in determining the defensive response to aversive stimuli. They also raise the question of whether gene variations in both ASIC1 and ASIC2 might affect fear and panic in humans.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Condicionamiento Clásico , Señales (Psicología) , Miedo , Canales Iónicos Sensibles al Ácido/genética , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Reacción Cataléptica de Congelación , Eliminación de Gen , Locomoción , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Densidad Postsináptica/metabolismo
7.
Genes Brain Behav ; 10(4): 444-50, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21324060

RESUMEN

Previous studies on mice with a disruption of the gene encoding acid-sensing ion channel 1a (ASIC1a) suggest that ASIC1a is required for normal fear behavior. To investigate the effects of altering the subunit composition of brain ASICs on behavior, we developed transgenic mice expressing ASIC3 via the pan-neuronal synapsin I promoter. These mice express ASIC3 in the brain, where the endogenous ASIC3 protein is not detected. We found that in ASIC3 transgenic mice, ASIC3 co-immunoprecipitated with the endogenous ASIC1a protein and distributed in the same subcellular brain fractions as ASIC1a. In addition, ASIC3 significantly increased the rate of desensitization of acid-evoked currents in cultured cortical neurons. Importantly, ASIC3 reduced Pavlovian fear conditioning to both context and auditory cues. These observations suggest that ASIC3 can heteromultimerize with ASIC1a in the brain and alter the biophysical properties of the endogenous channel complex. Moreover, these data suggest that ASIC subunit composition and channel desensitization may be critical determinants for ASIC-dependent behavior.


Asunto(s)
Encéfalo/metabolismo , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Neuronas/metabolismo , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Ácidos/farmacología , Estimulación Acústica , Animales , Conducta Animal/fisiología , Células Cultivadas , Señales (Psicología) , Electrofisiología , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Canales de Sodio/genética
8.
Gut ; 54(10): 1408-15, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15987792

RESUMEN

AIMS: Members of the acid sensing ion channel (ASIC) family are strong candidates as mechanical transducers in sensory function. The authors have shown that ASIC1a has no role in skin but a clear influence in gastrointestinal mechanotransduction. Here they investigate further ASIC1a in gut mechanoreceptors, and compare its influence with ASIC2 and ASIC3. METHODS AND RESULTS: Expression of ASIC1a, 2, and 3 mRNA was found in vagal (nodose) and dorsal root ganglia (DRG), and was lost in mice lacking the respective genes. Recordings of different classes of splanchnic colonic afferents and vagal gastro-oesophageal afferents revealed that disruption of ASIC1a increased the mechanical sensitivity of all afferents in both locations. Disruption of ASIC2 had varied effects: increased mechanosensitivity in gastro-oesophageal mucosal endings, decreases in gastro-oesophageal tension receptors, increases in colonic serosal endings, and no change in colonic mesenteric endings. In ASIC3-/- mice, all afferent classes had markedly reduced mechanosensitivity except gastro-oesophageal mucosal receptors. Observations of gastric emptying and faecal output confirmed that increases in mechanosensitivity translate to changes in digestive function in conscious animals. CONCLUSIONS: These data show that ASIC3 makes a critical positive contribution to mechanosensitivity in three out of four classes of visceral afferents. The presence of ASIC1a appears to provide an inhibitory contribution to the ion channel complex, whereas the role of ASIC2 differs widely across subclasses of afferents. These findings contrast sharply with the effects of ASIC1, 2, and 3 in skin, suggesting that targeting these subunits with pharmacological agents may have different and more pronounced effects on mechanosensitivity in the viscera.


Asunto(s)
Tracto Gastrointestinal/fisiología , Mecanorreceptores/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Canales de Sodio/fisiología , Canales Iónicos Sensibles al Ácido , Adaptación Fisiológica/fisiología , Animales , Colon/fisiología , Defecación/fisiología , Electrofisiología/métodos , Esófago/fisiología , Ganglios Sensoriales/fisiología , Vaciamiento Gástrico/fisiología , Mucosa Intestinal/fisiología , Proteínas de la Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , ARN Mensajero/análisis , Canales de Sodio/genética , Nervios Espinales/fisiología , Estómago/fisiología , Nervio Vago/fisiología
9.
J Biol Chem ; 271(14): 7879-82, 1996 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-8626462

RESUMEN

We have cloned a novel cDNA from human brain which encodes a non-voltage-dependent Na+ channel (BNC1). BNC1 has some sequence similarity (24-28%) with a new channel family that includes subunits of the mammalian epithelial Na+ channel, the Caenorhabditis elegans degenerins, and the Helix aspersa FMRF-amide-gated Na+ channel. Like other family members it is inhibited by amiloride. However, its predicted structure differs from other family members, its discrimination between Na+ and Li+ is different, and in contrast to other mammalian family members, coexpression with other cloned subunits of the family does not increase current. BNC1 has a unique pattern of expression with transcripts detected only in adult human brain and in spinal cord. Thus, BNC1 is the first cloned member of a new subfamily of mammalian Na+ channels. The function of BNC1 as a non-voltage-gated Na+ channel in human brain suggests it may play a novel role in neurotransmission.


Asunto(s)
Canales Iónicos , Proteínas del Tejido Nervioso/genética , Canales de Sodio/genética , Canales Iónicos Sensibles al Ácido , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Encéfalo/fisiología , Clonación Molecular , Canales de Sodio Degenerina , Canales Epiteliales de Sodio , Expresión Génica , Humanos , Datos de Secuencia Molecular , ARN Mensajero/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Sodio/fisiología , Xenopus laevis
10.
J Exp Zool ; 247(1): 69-76, 1988 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-3141556

RESUMEN

The effects of both 3,5,3'-triiodo-L-thyronine and spontaneous metamorphosis on Rana catesbeiana liver mRNA were studied using in vitro translation of isolated liver poly(A)+ RNA in a rabbit reticulocyte lysate system. Conventional phenol extraction methods yielded degraded RNA due to high levels of endogenous ribonucleases released upon homogenization of Rana catesbeiana liver. Isolation of intact total RNA was achieved using the potent ribonuclease denaturant, guanidinium thiocyanate. Adult bullfrog serum albumin was purified to homogeneity and a monospecific antibody was elicited against it. A serum protein of 23,000 daltons that migrated near serum albumin on a 6% native gel was also purified to homogeneity. A monospecific antibody was also raised against this protein. Both antibodies were used to quantitatively immunoprecipitate the in vitro translation products of poly(A)+ RNA isolated at intervals following a single injection of triiodothyronine or during various stages of spontaneous amphibian metamorphosis. Triiodothyronine caused a sevenfold increase in translatable albumin mRNA and a threefold increase in translatable mRNA for the 23,000 dalton protein. These increases are consistent with a nuclear initiated mechanism for thyroid hormone action during amphibian metamorphosis.


Asunto(s)
Albúminas/genética , Hígado/análisis , Biosíntesis de Proteínas , ARN Mensajero/biosíntesis , Triyodotironina/farmacología , Albúminas/biosíntesis , Animales , Northern Blotting , Electroforesis en Gel de Agar , Electroforesis en Gel de Poliacrilamida , Inmunodifusión , Metamorfosis Biológica , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Rana catesbeiana
11.
Biophys J ; 76(3): 1377-83, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10049320

RESUMEN

The brain Na+ channel-1 (BNC1, also known as MDEG1 or ASIC2) is a member of the DEG/ENaC cation channel family. Mutation of a specific residue (Gly430) that lies N-terminal to the second membrane-spanning domain activates BNC1 and converts it from a Na+-selective channel to one permeable to both Na+ and K+. Because all K+ channels are blocked by tetraethylammonium (TEA), we asked if TEA would inhibit BNC1 with a mutation at residue 430. External TEA blocked BNC1 when residue 430 was a Val or a Thr. Block was steeply voltage-dependent and was reduced when current was outward, suggesting multi-ion block within the channel pore. Block was dependent on the size of the quaternary ammonium; the smaller tetramethylammonium blocked with similar properties, whereas the larger tetrapropylammonium had little effect. When residue 430 was Phe, the effects of tetramethylammonium and tetrapropylammonium were not altered. In contrast, block by TEA was much less voltage-dependent, suggesting that the Phe mutation introduced a new TEA binding site located approximately 30% of the way across the electric field. These results provide insight into the structure and function of BNC1 and suggest that TEA may be a useful tool to probe function of this channel family.


Asunto(s)
Canales Iónicos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Bloqueadores de los Canales de Sodio , Tetraetilamonio/farmacología , Canales Iónicos Sensibles al Ácido , Animales , Sitios de Unión/genética , Fenómenos Biofísicos , Biofisica , Canales de Sodio Degenerina , Canales Epiteliales de Sodio , Humanos , Técnicas In Vitro , Potenciales de la Membrana , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Oocitos/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Canales de Sodio/química , Canales de Sodio/genética , Xenopus laevis
12.
J Biol Chem ; 273(46): 30204-7, 1998 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-9804777

RESUMEN

BNC1 is a mammalian neuronal cation channel in the novel DEG/ENaC ion channel family. BNC1 channels are transiently activated by extracellular protons and are constitutively activated by insertion of large residues, such as valine, in place of Gly-430; residue 430 is a site where analogous mutations in some Caenorhabditis elegans family members cause a swelling neurodegeneration. Mutation of Gly-430 to a small amino acid, cysteine, neither generated constitutive currents nor allowed modification of this residue by sulfhydryl-reactive methanethiosulfonate (MTS) compounds. However, when protons activated the channel, Cys-430 became accessible to extracellular MTS reagents, which modified Cys-430 to generate constitutive currents. Fluorescent MTS reagents also labeled Cys-430 in activated channels. These data indicate that protons induce a reversible conformational change that activates BNC1 thereby exposing residue 430 to the extracellular solution. Once Cys-430 is modified with a large chemical group, the channel is prevented from relaxing back to the inactive state. These results link ligand-dependent activation and activation by mutations that cause neurodegeneration.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Sustitución de Aminoácidos , Animales , Frío , Canales de Sodio Degenerina , Canales Epiteliales de Sodio , Metanosulfonato de Etilo/análogos & derivados , Metanosulfonato de Etilo/farmacología , Femenino , Indicadores y Reactivos/farmacología , Mesilatos/farmacología , Mutación , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Neuronas/efectos de los fármacos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Conformación Proteica/efectos de los fármacos , Canales de Sodio/genética , Relación Estructura-Actividad , Xenopus laevis
13.
Am J Physiol ; 268(5 Pt 1): C1157-63, 1995 May.
Artículo en Inglés | MEDLINE | ID: mdl-7762608

RESUMEN

Amiloride-sensitive Na+ channels are an important component of the Na+ reabsorption pathway in a number of epithelia. Here we report the cloning and characterization of cDNAs encoding two subunits of the human kidney epithelial Na+ channel (beta- and gamma-hENaC). Their predicted amino acid sequences were highly homologous (83-85% identical) to the corresponding subunits reported from rat colon (beta- and gamma-rENaC). Both beta- and gamma-hENaC mapped to human chromosome 16. Northern blot analysis showed high expression of beta- and gamma-hENaC in kidney and lung and differential expression of the three subunits in other tissues. Coexpression of beta- and gamma-hENaC with alpha-hENaC in Xenopus oocytes produced Na+ channels with high selectivity for Na+ and high sensitivity to amiloride. In addition, human subunits were able to substitute for the corresponding rat subunits in forming functional Na+ channels, suggesting conservation of function and suggesting that differences in sequence do not disrupt interactions between subunits. These results suggest that human alpha-, beta-, and gamma-ENaC together form Na+ channels with properties that are similar to those observed in epithelia, and will allow further investigation into the role that these channels may play in human disease.


Asunto(s)
Clonación Molecular , Riñón/metabolismo , Canales de Sodio/genética , Canales de Sodio/metabolismo , Secuencia de Aminoácidos , Animales , Northern Blotting , Epitelio/metabolismo , Humanos , Sondas Moleculares/genética , Datos de Secuencia Molecular , Oocitos/metabolismo , Xenopus
14.
J Biol Chem ; 271(41): 25184-91, 1996 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-8810276

RESUMEN

To explore the relationship between structure and function in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, we studied Xenopus CFTR. We found that the anion permeability sequence of cAMP-activated Cl- currents in the apical membrane of Xenopus A6 epithelia differed from that of cAMP-activated Cl- currents in human epithelia expressing CFTR. To understand the molecular basis for this difference and to learn whether CFTR from another species would have properties similar to human CFTR, we assembled a full-length Xenopus CFTR cDNA from A6 cells. Expression of Xenopus CFTR in HeLa cells generated cAMP-activated whole-cell currents and cAMP-dependent protein kinase-activated single channels that resembled those of human CFTR with the exception that the anion permeability sequence was different (Br- = I- > Cl- in Xenopus CFTR and Br- = Cl- > I- in human). In addition, the single-channel conductance of Xenopus CFTR was increased. To investigate protein regions that account for these differences, we constructed chimeric proteins by replacing either the first or second membrane-spanning domain of human CFTR with the equivalent region of Xenopus CFTR (hX1-6 and hX7-12, respectively) and examined their function in HeLa cells. We found that the anion permeability sequence (Br- = I- > Cl-) and single-channel conductance of hX1-6 resembled that of Xenopus CFTR expressed in HeLa cells, whereas hX7-12 had properties like those of human CFTR. However, the gating of hX1-6 showed a flickery behavior. The altered gating of hX1-6 was attributed to residues in the first extracellular loop of Xenopus CFTR because mutation of residues in that region to the corresponding residues of human CFTR produced gating behavior similar to that of human CFTR. These data suggest that sequence differences in the first membrane-spanning domains are responsible for the differences in the permeation properties of human and Xenopus CFTR and that the first extracellular loop influences channel gating.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Secuencia de Aminoácidos , Animales , Membrana Celular/fisiología , Permeabilidad de la Membrana Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Células HeLa , Humanos , Potenciales de la Membrana , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Fosforilación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Regresión , Homología de Secuencia de Aminoácido , Xenopus
15.
Cell ; 83(6): 969-78, 1995 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-8521520

RESUMEN

Liddle's syndrome is an inherited form of hypertension caused by mutations that truncate the C-terminus of human epithelial Na+ channel (hENaC) subunits. Expression of truncated beta and gamma hENaC subunits increased Na+ current. However, truncation did not alter single-channel conductance or open state probability, suggesting there were more channels in the plasma membrane. Moreover, truncation of the C-terminus of the beta subunit increased apical cell-surface expression of hENaC in a renal epithelium. We identified a conserved motif in the C-terminus of all three subunits that, when mutated, reproduced the effect of Liddle's truncations. Further, both truncation of the C-terminus and mutation of the conserved C-terminal motif increased surface expression of chimeric proteins containing the C-terminus of beta hENaC. Thus, by deleting a conserved motif, Liddle's mutations increase the number of Na+ channels in the apical membrane, which increases renal Na+ absorption and creates a predisposition to hypertension.


Asunto(s)
Hipertensión/genética , Hipertensión/metabolismo , Eliminación de Secuencia/genética , Canales de Sodio/metabolismo , Amilorida/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular , Secuencia de Consenso , Perros , Conductividad Eléctrica , Canales Epiteliales de Sodio , Epitelio , Mutación del Sistema de Lectura , Humanos , Hipertensión/fisiopatología , Activación del Canal Iónico/efectos de los fármacos , Riñón/citología , Riñón/metabolismo , Riñón/fisiopatología , Datos de Secuencia Molecular , Oocitos , Técnicas de Placa-Clamp , Canales de Sodio/biosíntesis , Canales de Sodio/genética , Síndrome , Xenopus
16.
Cell ; 36(2): 319-27, 1984 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-6607120

RESUMEN

We have transferred the mouse Ak alpha and Ak beta genes, which encode the class II I-Ak molecule, into mouse L-cell fibroblasts and hamster B cells. I-Ak molecules are expressed on the surface of both cell types. The L-cell and hamster B-cell I-Ak molecules appear normal by serological analyses and two-dimensional gel electrophoresis. Furthermore, the I-Ak molecules on L cells can act as targets for the allogenic T-cell killing of the transformed L cells. The I-Ak molecules in both mouse fibroblasts and hamster B cells can present certain antigens to T-cell helper hybridomas. Thus only class II molecules are required to convert the nonantigen-presenting cell. Accordingly, it will be possible to dissect the structure-function relationships existing between Ia molecules, foreign antigen, and T-cell receptor molecules by in vitro site-directed mutagenesis and gene transfer.


Asunto(s)
Linfocitos B/inmunología , Genes , Antígenos H-2/genética , Animales , Anticuerpos Monoclonales , Línea Celular , Cricetinae , Citotoxicidad Inmunológica , Electroforesis en Gel de Poliacrilamida , Antígenos H-2/aislamiento & purificación , Hibridomas/inmunología , Células L/inmunología , Activación de Linfocitos , Ratones , Linfocitos T/inmunología
17.
Nature ; 407(6807): 1007-11, 2000 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-11069180

RESUMEN

Of the vertebrate senses, touch is the least understood at the molecular level The ion channels that form the core of the mechanosensory complex and confer touch sensitivity remain unknown. However, the similarity of the brain sodium channel 1 (BNC1) to nematode proteins involved in mechanotransduction indicated that it might be a part of such a mechanosensor. Here we show that disrupting the mouse BNC1 gene markedly reduces the sensitivity of a specific component of mechanosensation: low-threshold rapidly adapting mechanoreceptors. In rodent hairy skin these mechanoreceptors are excited by hair movement. Consistent with this function, we found BNC1 in the lanceolate nerve endings that lie adjacent to and surround the hair follicle. Although BNC1 has been proposed to have a role in pH sensing, the acid-evoked current in cultured sensory neurons and the response of acid-stimulated nociceptors were normal in BNC1 null mice. These data identify the BNC1 channel as essential for the normal detection of light touch and indicate that BNC1 may be a central component of a mechanosensory complex.


Asunto(s)
Canales Iónicos/fisiología , Proteínas del Tejido Nervioso/fisiología , Canales de Sodio/fisiología , Tacto/fisiología , Animales , Células Cultivadas , Canales de Sodio Degenerina , Canales Epiteliales de Sodio , Ganglios Espinales/fisiología , Marcación de Gen , Folículo Piloso/inervación , Folículo Piloso/fisiología , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Canales Iónicos/genética , Mecanorreceptores/fisiología , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Umbral Sensorial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA