Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Pathog ; 16(10): e1008848, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007034

RESUMEN

Colonization factor CFA/I defines the major adhesive fimbriae of enterotoxigenic Escherichia coli and mediates bacterial attachment to host intestinal epithelial cells. The CFA/I fimbria consists of a tip-localized minor adhesive subunit, CfaE, and thousands of copies of the major subunit CfaB polymerized into an ordered helical rod. Biosynthesis of CFA/I fimbriae requires the assistance of the periplasmic chaperone CfaA and outer membrane usher CfaC. Although the CfaE subunit is proposed to initiate the assembly of CFA/I fimbriae, how it performs this function remains elusive. Here, we report the establishment of an in vitro assay for CFA/I fimbria assembly and show that stabilized CfaA-CfaB and CfaA-CfaE binary complexes together with CfaC are sufficient to drive fimbria formation. The presence of both CfaA-CfaE and CfaC accelerates fimbria formation, while the absence of either component leads to linearized CfaB polymers in vitro. We further report the crystal structure of the stabilized CfaA-CfaE complex, revealing features unique for biogenesis of Class 5 fimbriae.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Escherichia coli Enterotoxigénica/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Citoplasma , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/genética , Chaperonas Moleculares/genética , Conformación Proteica , Homología de Secuencia de Aminoácido
2.
Proc Natl Acad Sci U S A ; 115(38): E8968-E8976, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126994

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a global diarrheal pathogen that utilizes adhesins and secreted enterotoxins to cause disease in mammalian hosts. Decades of research on virulence factor regulation in ETEC has revealed a variety of environmental factors that influence gene expression, including bile, pH, bicarbonate, osmolarity, and glucose. However, other hallmarks of the intestinal tract, such as low oxygen availability, have not been examined. Further, determining how ETEC integrates these signals in the complex host environment is challenging. To address this, we characterized ETEC's response to the human host using samples from a controlled human infection model. We found ETEC senses environmental oxygen to globally influence virulence factor expression via the oxygen-sensitive transcriptional regulator fumarate and nitrate reduction (FNR) regulator. In vitro anaerobic growth replicates the in vivo virulence factor expression profile, and deletion of fnr in ETEC strain H10407 results in a significant increase in expression of all classical virulence factors, including the colonization factor antigen I (CFA/I) adhesin operon and both heat-stable and heat-labile enterotoxins. These data depict a model of ETEC infection where FNR activity can globally influence virulence gene expression, and therefore proximity to the oxygenated zone bordering intestinal epithelial cells likely influences ETEC virulence gene expression in vivo. Outside of the host, ETEC biofilms are associated with seasonal ETEC epidemics, and we find FNR is a regulator of biofilm production. Together these data suggest FNR-dependent oxygen sensing in ETEC has implications for human infection inside and outside of the host.


Asunto(s)
Escherichia coli Enterotoxigénica/patogenicidad , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Proteínas Hierro-Azufre/genética , Adulto , Biopelículas , Diarrea/epidemiología , Diarrea/microbiología , Diarrea/prevención & control , Células Epiteliales/microbiología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Proteínas de Escherichia coli/metabolismo , Vacunas contra Escherichia coli/administración & dosificación , Femenino , Voluntarios Sanos , Humanos , Intestinos/citología , Intestinos/microbiología , Proteínas Hierro-Azufre/metabolismo , Masculino , Persona de Mediana Edad , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Adulto Joven
3.
Infect Immun ; 88(11)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32839190

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a leading diarrheagenic bacterial pathogen among travelers and children in resource-limited regions. Adherence to host intestinal cells mediated by ETEC fimbriae is believed to be a critical first step in ETEC pathogenesis. These fimbriae are categorized into related classes based on sequence similarity, with members of the class 5 fimbrial family being the best characterized. The eight related members of the ETEC class 5 fimbrial family are subdivided into three subclasses (5a, 5b, and 5c) that share similar structural arrangements, including a fimbrial tip adhesin. However, sequence variability among the class 5 adhesins may hinder the generation of cross-protective antibodies. To better understand functional epitopes of the class 5 adhesins and their ability to induce intraclass antibody responses, we produced 28 antiadhesin monoclonal antibodies (MAbs) to representative adhesins CfaE, CsbD, and CotD, respectively. We determined the MAb cross-reactivities, localized the epitopes, and measured functional activities as potency in inhibition of hemagglutination induced by class 5 fimbria-bearing ETEC. The MAbs' reactivities to a panel of class 5 adhesins in enzyme-linked immunosorbent assays (ELISAs) revealed several reactivity patterns, including individual adhesin specificity, intrasubclass specificity, intersubclass specificity, and class-wide cross-reactivity, suggesting that some conserved epitopes, including two conserved arginines, are shared by the class 5 adhesins. However, the cross-reactive MAbs had functional activities limited to strains expressing colonization factor antigen I (CFA/I), coli surface antigen 17 (CS17), or CS1, suggesting that the breadth of functional activities of the MAbs was more restricted than the repertoire of cross-reactivities measured by ELISA. The results imply that multivalent adhesin-based ETEC vaccines or prophylactics need more than one active component to reach broad protection.


Asunto(s)
Adhesinas de Escherichia coli/inmunología , Anticuerpos Monoclonales/inmunología , Reacciones Cruzadas/inmunología , Escherichia coli Enterotoxigénica/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Mapeo Epitopo , Femenino , Ratones , Ratones Endogámicos BALB C
4.
Infect Immun ; 88(11)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32839188

RESUMEN

Recent efforts to develop an enterotoxigenic Escherichia coli (ETEC) vaccine have focused on the antigenically conserved tip adhesins of colonization factors. We showed previously that intranasal immunization with dsc19CfaE, a soluble variant of the in cis donor strand-complemented tip adhesin of a colonization factor of the class 5 family (CFA/I) fimbria, is highly immunogenic and protects against oral challenge with CFA/I-positive (CFA/I+) ETEC strain H10407 in the Aotus nancymaae nonhuman primate. We also reported a cholera toxin (CT)-like chimera (called dsc19CfaE-CTA2/CTB) in which the CTA1 domain of CT was replaced by dsc19CfaE that was strongly immunogenic when administered intranasally or orogastrically in mice. Here, we evaluate the immunogenicity and protective efficacy (PE) of a refined and more stable chimera comprised of a pentameric B subunit of ETEC heat-labile toxin (LTB) in lieu of the CTB pentamer and a donor strand truncation (dsc14) of CfaE. The refined chimera, dsc14CfaE-sCTA2/LTB, was highly immunogenic in mice when administered intranasally or intradermally, eliciting serum and fecal antibody responses against CfaE and LTB, as well as strong hemagglutination inhibition titers, a surrogate for neutralization of intestinal adhesion mediated by CfaE. Moreover, the chimera was safe and highly immunogenic when administered intradermally to guinea pigs. In A. nancymaae, intradermal (i.d.) immunization with chimera plus single-mutant heat-labile toxin [LT(R192G)] elicited strong serum anti-CfaE and anti-LTB antibody responses and conferred significant reduction of diarrhea compared to phosphate-buffered saline (PBS) controls (PE = 84.1%; P < 0.02). These data support the further evaluation of dsc14CfaE-sCTA2/LTB as an ETEC vaccine in humans.


Asunto(s)
Adhesinas de Escherichia coli/inmunología , Toxina del Cólera/inmunología , Infecciones por Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Animales , Aotidae , Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/prevención & control , Cobayas , Ratones , Proteínas Recombinantes de Fusión/inmunología
5.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824772

RESUMEN

Infectious diarrhea affects over four billion individuals annually and causes over a million deaths each year. Though not typically prescribed for treatment of uncomplicated diarrheal disease, antimicrobials serve as a critical part of the armamentarium used to treat severe or persistent cases. Due to widespread over- and misuse of antimicrobials, there has been an alarming increase in global resistance, for which a standardized methodology for geographic surveillance would be highly beneficial. To demonstrate that a standardized methodology could be used to provide molecular surveillance of antimicrobial resistance (AMR) genes, we initiated a pilot study to test 130 diarrheal pathogens (Campylobacter spp., Escherichia coli, Salmonella, and Shigella spp.) from the USA, Peru, Egypt, Cambodia, and Kenya for the presence/absence of over 200 AMR determinants. We detected a total of 55 different determinants conferring resistance to ten different categories of antimicrobials: genes detected in ≥ 25 samples included blaTEM, tet(A), tet(B), mac(A), mac(B), aadA1/A2, strA, strB, sul1, sul2, qacEΔ1, cmr, and dfrA1. The number of determinants per strain ranged from none (several Campylobacter spp. strains) to sixteen, with isolates from Egypt harboring a wider variety and greater number of genes per isolate than other sites. Two samples harbored carbapenemase genes, blaOXA-48 or blaNDM. Genes conferring resistance to azithromycin (ere(A), mph(A)/mph(K), erm(B)), a first-line therapeutic for severe diarrhea, were detected in over 10% of all Enterobacteriaceae tested: these included >25% of the Enterobacteriaceae from Egypt and Kenya. Forty-six percent of the Egyptian Enterobacteriaceae harbored genes encoding CTX-M-1 or CTX-M-9 families of extended-spectrum ß-lactamases. Overall, the data provide cross-comparable resistome information to establish regional trends in support of international surveillance activities and potentially guide geospatially informed medical care.


Asunto(s)
Campylobacter/genética , Diarrea/microbiología , Farmacorresistencia Microbiana , Escherichia coli Enteropatógena/genética , Genes Bacterianos , Salmonella/genética , Shigella/genética , Antibacterianos/toxicidad , Campylobacter/efectos de los fármacos , Campylobacter/aislamiento & purificación , Campylobacter/patogenicidad , Diarrea/epidemiología , Escherichia coli Enteropatógena/efectos de los fármacos , Escherichia coli Enteropatógena/aislamiento & purificación , Escherichia coli Enteropatógena/patogenicidad , Humanos , Salmonella/efectos de los fármacos , Salmonella/aislamiento & purificación , Salmonella/patogenicidad , Shigella/efectos de los fármacos , Shigella/aislamiento & purificación , Shigella/patogenicidad
6.
Infect Immun ; 87(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30602504

RESUMEN

CS6, a prevalent surface antigen expressed in nearly 20% of clinical enterotoxigenic Escherichia coli (ETEC) isolates, is comprised of two major subunit proteins, CssA and CssB. Using donor strand complementation, we constructed a panel of recombinant proteins of 1 to 3 subunits that contained combinations of CssA and/or CssB subunits and a donor strand, a C-terminal extension of 16 amino acids that was derived from the N terminus of either CssA or CssB. While the entire panel of recombinant proteins could be obtained as soluble, folded proteins, it was observed that the proteins possessing a heterologous donor strand, derived from the CS6 subunit different from the C-terminal subunit, had the highest degree of physical and thermal stability. Immunological characterization of the proteins, using a murine model, demonstrated that robust anti-CS6 immune responses were generated from fusions containing both CssA and CssB. Proteins containing only CssA were weakly immunogenic. Heterodimers, i.e., CssBA and CssAB, were sufficient to recapitulate the anti-CS6 immune response elicited by immunization with CS6, including the generation of functional neutralizing antibodies, as no further enhancement of the response was obtained with the addition of a third CS6 subunit. Our findings here demonstrate the feasibility of including a recombinant CS6 subunit protein in a subunit vaccine strategy against ETEC.


Asunto(s)
Antígenos Bacterianos/inmunología , Escherichia coli Enterotoxigénica/metabolismo , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Escherichia coli Enterotoxigénica/inmunología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Subunidades de Proteína/inmunología
7.
Infect Immun ; 87(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510102

RESUMEN

The establishment of an animal model that closely approximates enterotoxigenic Escherichia coli (ETEC) disease in humans is critical for the development and evaluation of vaccines against this enteropathogen. Here, we evaluated the susceptibility of Aotus nancymaae, a New World monkey species, to ETEC infection. Animals were challenged orogastrically with 109 to 1011 CFU of the human pathogenic CFA/I+ ETEC strain H10407 and examined for evidence of diarrhea and fecal shedding of bacteria. A clear dose-range effect was obtained, with diarrheal attack rates of 40% to 80%, validated in a follow-on study demonstrating an attack rate of 80% with 1011 CFU of H10407 ETEC. To determine whether this model is an effective approach for assessing ETEC vaccine candidates, we used it to evaluate the ability of the donor strand-complemented CFA/I adhesin CfaE (dscCfaE) to protect against H10407 challenge. In a series of experiments, animals were intranasally vaccinated with dscCfaE alone, dscCfaE with either cholera toxin B-subunit (CTB) or heat-labile toxin (LTB), or phosphate-buffered saline (PBS) alone and then challenged with 1011 CFU of H10407. Control animals vaccinated with PBS had attack rates of 70 to 90% on challenge. Vaccination with dscCfaE, or dscCfaE admixed with CTB or LTB, resulted in a reduction of attack rates, with vaccine efficacies of 66.7% (P = 0.02), 77.7% (P = 0.006), and 42.9% (P = 0.370) to 83.3% (P = 0.041), respectively. In conclusion, we have shown the H10407 ETEC challenge of A. nancymaae to be an effective, reproducible model of ETEC disease, and importantly, we have demonstrated that in this model, vaccination with the prototype vaccine candidate dscCfaE is protective against CF-homologous disease.


Asunto(s)
Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/prevención & control , Vacunas contra Escherichia coli , Administración Intranasal , Animales , Anticuerpos Antibacterianos/sangre , Diarrea/microbiología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Heces/microbiología , Humanos , Inmunoglobulina G/sangre , Primates
8.
J Biol Chem ; 288(11): 7492-7505, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23306199

RESUMEN

The cytolethal distending toxins (CDTs) compose a subclass of intracellularly acting genotoxins produced by many Gram-negative pathogenic bacteria that disrupt the normal progression of the eukaryotic cell cycle. Here, the intoxication mechanisms of CDTs from Escherichia coli (Ec-CDT) and Haemophilus ducreyi (Hd-CDT), which share limited amino acid sequence homology, were directly compared. Ec-CDT and Hd-CDT shared comparable in vitro DNase activities of the CdtB subunits, saturable cell surface binding with comparable affinities, and the requirement for an intact Golgi complex to induce cell cycle arrest. In contrast, disruption of endosome acidification blocked Hd-CDT-mediated cell cycle arrest and toxin transport to the endoplasmic reticulum and nucleus, while having no effects on Ec-CDT. Phosphorylation of the histone protein H2AX, as well as nuclear localization, was inhibited for Hd-CdtB, but not Ec-CdtB, in cells expressing dominant negative Rab7 (T22N), suggesting that Hd-CDT, but not Ec-CDT, is trafficked through late endosomal vesicles. In support of this idea, significantly more Hd-CdtB than Ec-CdtB co-localized with Rab9, which is enriched in late endosomal compartments. Competitive binding studies suggested that Ec-CDT and Hd-CDT bind to discrete cell surface determinants. These results suggest that Ec-CDT and Hd-CDT are transported within cells by distinct pathways, possibly mediated by their interaction with different receptors at the cell surface.


Asunto(s)
Toxinas Bacterianas/metabolismo , Escherichia coli/metabolismo , Haemophilus ducreyi/metabolismo , Animales , Biotinilación , Células CHO , Células CACO-2 , Ciclo Celular , Núcleo Celular/metabolismo , Clonación Molecular , Cricetinae , Desoxirribonucleasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Transporte de Proteínas , Proteínas Recombinantes/química
9.
Microorganisms ; 12(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38674674

RESUMEN

Controlled human infection models are important tools for the evaluation of vaccines against diseases where an appropriate correlate of protection has not been identified. Enterotoxigenic Escherichia coli (ETEC) strain LSN03-016011/A (LSN03) is an LT enterotoxin and CS17-expressing ETEC strain useful for evaluating vaccine candidates targeting LT-expressing strains. We sought to confirm the ability of the LSN03 strain to induce moderate-to-severe diarrhea in a healthy American adult population, as well as the impact of immunization with an investigational cholera/ETEC vaccine (VLA-1701) on disease outcomes. A randomized, double-blinded pilot study was conducted in which participants received two doses of VLA1701 or placebo orally, one week apart; eight days after the second vaccination, 30 participants (15 vaccinees and 15 placebo recipients) were challenged with approximately 5 × 109 colony-forming units of LSN03. The vaccine was well tolerated, with no significant adverse events. The vaccine also induced serum IgA and IgG responses to LT. After challenge, 11 of the placebo recipients (73.3%; 95%CI: 48.0-89.1) and 7 of the VLA1701 recipients (46.7%; 95%CI: 24.8-68.8) had moderate-to-severe diarrhea (p = 0.26), while 14 placebo recipients (93%) and 8 vaccine recipients (53.3%) experienced diarrhea of any severity, resulting in a protective efficacy of 42.9% (p = 0.035). In addition, the vaccine also appeared to provide protection against more severe diarrhea (p = 0.054). Vaccinees also tended to shed lower levels of the LSN03 challenge strain compared to placebo recipients (p = 0.056). In addition, the disease severity score was lower for the vaccinees than for the placebo recipients (p = 0.046). In summary, the LSN03 ETEC challenge strain induced moderate-to-severe diarrhea in 73.3% of placebo recipients. VLA1701 vaccination ameliorated disease severity, as observed by several parameters, including the percentage of participants experiencing diarrhea, as well as stool frequency and ETEC severity scores. These data highlight the potential value of LSN03 as a suitable ETEC challenge strain to evaluate LT-based vaccine targets (NCT03576183).

10.
Microorganisms ; 11(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37764065

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) are common causes of infectious diarrhea among young children of low-and middle-income countries (LMICs) and travelers to these regions. Despite their significant contributions to the morbidity and mortality associated with childhood and traveler's diarrhea, no licensed vaccines are available. Current vaccine strategies may benefit from the inclusion of additional conserved antigens, which may contribute to broader coverage and enhanced efficacy, given their key roles in facilitating intestinal colonization and effective enterotoxin delivery. EatA and EtpA are widely conserved in diverse populations of ETEC, but their immunogenicity has only been studied in controlled human infection models and a population of children in Bangladesh. Here, we compared serologic responses to EatA, EtpA and heat-labile toxin in populations from endemic regions including Haitian children and subjects residing in Egypt, Cameroon, and Peru to US children and adults where ETEC infections are sporadic. We observed elevated IgG and IgA responses in individuals from endemic regions to each of the antigens studied. In a cohort of Haitian children, we observed increased immune responses following exposure to each of the profiled antigens. These findings reflect the wide distribution of ETEC infections across multiple endemic regions and support further evaluation of EatA and EtpA as candidate ETEC vaccine antigens.

11.
J Biol Chem ; 285(24): 18199-207, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20385557

RESUMEN

Cytolethal distending toxins (CDTs) are tripartite protein exotoxins produced by a diverse group of pathogenic Gram-negative bacteria. Based on their ability to induce DNA damage, cell cycle arrest, and apoptosis of cultured cells, CDTs are proposed to enhance virulence by blocking cellular division and/or directly killing epithelial and immune cells. Despite the widespread distribution of CDTs among several important human pathogens, our understanding of how these toxins interact with host cells is limited. Here we demonstrate that CDTs from Haemophilus ducreyi, Aggregatibacter actinomycetemcomitans, Escherichia coli, and Campylobacter jejuni differ in their abilities to intoxicate host cells with defined defects in host factors previously implicated in CDT binding, including glycoproteins, and glycosphingolipids. The absence of cell surface sialic acid sensitized cells to intoxication by three of the four CDTs tested. Surprisingly, fucosylated N-linked glycans and glycolipids, previously implicated in CDT-host interactions, were not required for intoxication by any of the CDTs tested. Finally, altering host-cellular cholesterol, also previously implicated in CDT binding, affected intoxication by only a subset of CDTs tested. The findings presented here provide insight into the molecular and cellular basis of CDT-host interactions.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Colesterol/química , Polisacáridos/química , Animales , Células CHO , Campylobacter jejuni/metabolismo , Colesterol/metabolismo , Cricetinae , Cricetulus , Daño del ADN , Escherichia coli/metabolismo , Glucolípidos/química , Bacterias Gramnegativas/metabolismo , Haemophilus ducreyi/metabolismo , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Unión Proteica
12.
PLoS One ; 15(3): e0230138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32176708

RESUMEN

Surface-expressed colonization factors and their subunits are promising candidates for inclusion into a multivalent vaccine targeting enterotoxigenic Escherichia coli (ETEC), a leading cause of acute bacterial diarrhea in developing regions. However, soluble antigens are often poorly immunogenic in the absence of an adjuvant. We show here that the serum immune response to CfaE, the adhesin of the ETEC colonization factor CFA/I, can be enhanced in BALB/c mice by immunization with a chimeric antigen containing CfaE and pentameric cholera toxin B subunit (CTB) of cholera toxin from Vibrio cholerae. We constructed this antigen by replacing the coding sequence for the A1 domain of the cholera toxin A subunit (CTA) with the sequence of donor strand complemented CfaE (dscCfaE) within the cholera toxin operon, resulting in a dscCfaE-CTA2 fusion. After expression, via non-covalent interactions between CTA2 and CTB, the fusion and CTB polypeptides assemble into a complex containing a single dscCfaE-CTA2 protein bound to pentameric CTB (dscCfaE-CTA2/CTB). This holotoxin-like chimera retained the GM1 ganglioside binding activity of CTB, as well as the ability of CfaE to mediate the agglutination of bovine red blood cells when adsorbed to polystyrene beads. When administered intranasally to mice, the presence of CTB in the chimera significantly increased the serum immune response to CfaE compared to dscCfaE alone, stimulating a response similar to that obtained with a matched admixture of dscCfaE and CTB. However, by the orogastric route, immunization with the chimera elicited a superior functional immune response compared to an equivalent admixture of dscCfaE and CTB, supporting further investigation of the chimera as an ETEC vaccine candidate.


Asunto(s)
Toxina del Cólera , Escherichia coli Enterotoxigénica , Vacunas contra Escherichia coli , Proteínas Fimbrias , Proteínas Recombinantes de Fusión , Animales , Femenino , Ratones , Adhesinas Bacterianas/inmunología , Adhesinas Bacterianas/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Toxina del Cólera/genética , Toxina del Cólera/inmunología , Toxina del Cólera/metabolismo , Escherichia coli Enterotoxigénica/inmunología , Vacunas contra Escherichia coli/inmunología , Proteínas Fimbrias/genética , Proteínas Fimbrias/inmunología , Proteínas Fimbrias/metabolismo , Inmunización , Inmunogenicidad Vacunal , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo
13.
PLoS One ; 15(12): e0239888, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33264302

RESUMEN

BACKGROUND: Human challenge models for enterotoxigenic Escherichia coli (ETEC) facilitate vaccine down-selection. The B7A (O148:H28 CS6+LT+ST+) strain is important for vaccine development. We sought to refine the B7A model by identifying a dose and fasting regimen consistently inducing moderate-severe diarrhea. METHODS: An initial cohort of 28 subjects was randomized (1:1:1:1) to receive B7A following an overnight fast at doses of 108 or 109 colony forming units (cfu) or a 90-minute fast at doses of 109 or 1010 cfu. A second cohort included naïve and rechallenged subjects who had moderate-severe diarrhea and were given the target regimen. Immune responses to important ETEC antigens were assessed. RESULTS: Among subjects receiving 108 cfu of B7A, overnight fast, or 109 cfu, 90-minute fast, 42.9% (3/7) had moderate-severe diarrhea. Higher attack rates (71.4%; 5/7) occurred in subjects receiving 109 cfu, overnight fast, or 1010 cfu, 90-minute fast. Upon rechallenge with 109 cfu of B7A, overnight fast, 5/11 (45.5%) had moderate-severe diarrhea; the attack rate among concurrently challenge naïve subjects was 57.9% (11/19). Anti-CS6, O148 LPS and LT responses were modest across all groups. CONCLUSIONS: An overnight fast enabled a reduction in the B7A inoculum dose; however, the attack rate was inconsistent and protection upon rechallenge was minimal.


Asunto(s)
Antígenos Bacterianos/análisis , Diarrea/etiología , Escherichia coli Enterotoxigénica/patogenicidad , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/análisis , Vacunas contra Escherichia coli , Adolescente , Adulto , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Carga Bacteriana , Toxinas Bacterianas/inmunología , Ciprofloxacina/uso terapéutico , Diarrea/microbiología , Diarrea/terapia , Relación Dosis-Respuesta Inmunológica , Escherichia coli Enterotoxigénica/inmunología , Escherichia coli Enterotoxigénica/aislamiento & purificación , Enterotoxinas/inmunología , Infecciones por Escherichia coli/prevención & control , Proteínas de Escherichia coli/inmunología , Ayuno , Heces/microbiología , Femenino , Fluidoterapia , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Lipopolisacáridos/inmunología , Masculino , Persona de Mediana Edad , Distribución Aleatoria , Factores de Tiempo , Adulto Joven
14.
Vaccine ; 37(42): 6134-6138, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31492474

RESUMEN

dscCfaE is a recombinant form of the CFA/I tip adhesin CfaE, expressed by a large proportion of enterotoxigenic E. coli (ETEC). It is highly immunogenic by the intranasal route in mice and Aotus nancymaae, protective against challenge with CFA/I+ ETEC in an A. nancymaae challenge model, and antibodies to dscCfaE passively protect against CFA/I+ ETEC challenge in human volunteers. Here, we show that transcutaneous immunization (TCI) with dscCfaE in mice resulted in strong anti-CfaE IgG serum responses, with a clear dose-response effect. Co-administration with heat-labile enterotoxin (LT) resulted in enhanced immune responses over those elicited by dscCfaE alone and strong anti-LT antibody responses. The highest dose of dscCfaE administered transcutaneously with LT elicited strong HAI titers, a surrogate for the neutralization of intestinal adhesion. Fecal anti-adhesin IgG and IgA antibody responses were also induced. These findings support the feasibility of TCI for the application of an adhesin-toxin based ETEC vaccine.


Asunto(s)
Toxinas Bacterianas/inmunología , Escherichia coli Enterotoxigénica/inmunología , Enterotoxinas/inmunología , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Proteínas Fimbrias/inmunología , Vacunación/métodos , Adhesinas de Escherichia coli/inmunología , Administración Cutánea , Animales , Femenino , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/inmunología
15.
J Mol Biol ; 367(5): 1413-30, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17320105

RESUMEN

Virulence factor expression in Vibrio cholerae is controlled by the transcriptional regulatory protein ToxT. ToxT activates transcription of the genes encoding cholera toxin (ctx) and the toxin co-regulated pilus (tcp), as well as accessory colonization factor (acf) genes. Previous studies of ToxT, a member of the AraC family of proteins, have revealed that it consists of two domains, an N-terminal dimerization and environmental sensing domain, and a C-terminal DNA binding domain. In this study, comprehensive scanning alanine mutagenesis was utilized to identify amino acids critical for the function of ToxT. Forty-eight proteins with Ala substitutions (of 267 total) exhibited defects in ToxT-dependent activation (>90% reduction) in both a V. cholerae acfA-phoA reporter strain and a Salmonella typhimurium ctxAp-lacZ reporter strain. Most of these mutant proteins also caused reductions in cholera toxin (CT) and toxin coregulated pilus (TCP) expression in a DeltatoxT V cholerae strain under in vitro virulence factor inducing conditions. Further analysis with a LexA-based reporter system revealed that one of the 20 Ala substitutions in the N terminus (F151A) diminishes dimerization, and this residue is located in a region of predicted alpha-helical structure, thus identifying a putative dimer interface. Ala substitutions in two putative helix-turn-helix (HTH) recognition helices that caused differential promoter activation (K203A and S249A) did not appear to alter specific DNA binding, suggesting these residues contribute to other aspects of transcriptional activation. A number of Ala substitutions were also found that result in a higher level of ToxT transcriptional activity, and these mutations were almost exclusively found within the N terminus, consistent with this domain being involved in modulation of ToxT activity. This study illuminates the contribution of specific amino acids to the dimerization, DNA binding, and transcriptional activity of ToxT.


Asunto(s)
Alanina/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Mutagénesis Sitio-Dirigida , Factores de Transcripción/química , Factores de Transcripción/genética , Vibrio cholerae/genética , Fosfatasa Alcalina/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/fisiología , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Regulación Bacteriana de la Expresión Génica , Operón Lac , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Factores de Transcripción/metabolismo , Activación Transcripcional , Vibrio cholerae/patogenicidad , Factores de Virulencia/genética
16.
Vaccine ; 36(45): 6695-6702, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30269917

RESUMEN

Enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni (CJ), and Shigella sp. are major causes of bacterial diarrhea worldwide, but there are no licensed vaccines against any of these pathogens. Most current approaches to ETEC vaccines are based on recombinant proteins that are involved in virulence, particularly adhesins. In contrast, approaches to Shigella and CJ vaccines have included conjugate vaccines in which Shigella lipopolysaccharides (LPS) or CJ capsule polysaccharides are chemically conjugated to proteins. We have explored the feasibility of developing a multi-pathogen vaccine by using ETEC proteins as conjugating partners for CJ and Shigella polysaccharides. We synthesized three vaccines in which two CJ polysaccharides were conjugated to two recombinant ETEC adhesins based on CFA/I (CfaEB) and CS6 (CssBA), and LPS from Shigella flexneri was also conjugated to CfaEB. The vaccines were immunogenic in mice as monovalent, bivalent and trivalent formulations. Importantly, functional antibodies capable of inducing hemaglutination inhibition (HAI) of a CFA/I expressing ETEC strain were induced in all vaccines containing CfaEB. These data suggest that conjugate vaccines could be a platform for a multi-pathogen, multi-serotype vaccine against the three major causes of diarrheal disease worldwide.


Asunto(s)
Campylobacter jejuni/patogenicidad , Escherichia coli Enterotoxigénica/patogenicidad , Shigella/patogenicidad , Vacunas Conjugadas/uso terapéutico , Animales , Campylobacter jejuni/inmunología , Escherichia coli Enterotoxigénica/inmunología , Ensayo de Inmunoadsorción Enzimática , Pruebas de Inhibición de Hemaglutinación , Ratones , Ratones Endogámicos BALB C , Shigella/inmunología
17.
J Clin Invest ; 128(8): 3298-3311, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771685

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) infections are highly prevalent in developing countries, where clinical presentations range from asymptomatic colonization to severe cholera-like illness. The molecular basis for these varied presentations, which may involve strain-specific virulence features as well as host factors, has not been elucidated. We demonstrate that, when challenged with ETEC strain H10407, originally isolated from a case of cholera-like illness, blood group A human volunteers developed severe diarrhea more frequently than individuals from other blood groups. Interestingly, a diverse population of ETEC strains, including H10407, secrete the EtpA adhesin molecule. As many bacterial adhesins also agglutinate red blood cells, we combined the use of glycan arrays, biolayer inferometry, and noncanonical amino acid labeling with hemagglutination studies to demonstrate that EtpA is a dominant ETEC blood group A-specific lectin/hemagglutinin. Importantly, we have also shown that EtpA interacts specifically with glycans expressed on intestinal epithelial cells from blood group A individuals and that EtpA-mediated bacterial-host interactions accelerate bacterial adhesion and effective delivery of both the heat-labile and heat-stable toxins of ETEC. Collectively, these data provide additional insight into the complex molecular basis of severe ETEC diarrheal illness that may inform rational design of vaccines to protect those at highest risk.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/metabolismo , Diarrea , Escherichia coli Enterotoxigénica , Células Epiteliales/metabolismo , Infecciones por Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Adhesinas de Escherichia coli/metabolismo , Diarrea/metabolismo , Diarrea/microbiología , Diarrea/patología , Escherichia coli Enterotoxigénica/metabolismo , Escherichia coli Enterotoxigénica/patogenicidad , Células Epiteliales/microbiología , Células Epiteliales/patología , Infecciones por Escherichia coli/patología , Femenino , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Índice de Severidad de la Enfermedad
18.
Artículo en Inglés | MEDLINE | ID: mdl-28883945

RESUMEN

Noroviruses are the leading cause of acute gastroenteritis in the United States and are responsible for at least 50 % of acute gastroenteritis outbreaks occurring worldwide each year. In addition, noroviruses have caused outbreaks on cruise ships, in nursing homes and hospitals, and in deployed military personnel, but its role in the etiology of travelers' diarrhea is not well defined. The aim of this review is to describe the role of noroviruses in travelers' diarrhea in terms of epidemiology, current diagnostics, treatment and vaccine development efforts. Studies have shown prevalence rates of noroviruses in travelers' diarrhea cases ranging from 10-65 %. It is likely that norovirus prevalence rates are highly underestimated in travelers' diarrhea due to rapid onset, short duration of the illness, limited availability of laboratory facilities, and the fact that most clinical laboratories lack the diagnostic capability to detect noroviruses in stool. Further, additional studies are needed to accurately determine the true prevalence rates of norovirus as an etiologic agent of diarrhea among travelers to different regions around the world. With the rapid progress in the development of a norovirus vaccine, travelers could serve as an ideal population for future norovirus clinical trials.

19.
J Glob Antimicrob Resist ; 3(3): 198-204, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27873709

RESUMEN

This study aimed to identify the molecular determinants responsible for antibiotic resistance among human wound isolates in Cambodia. Staphylococcus spp. (n=10) and a variety of Gram-negative isolates (n=21) were taken from a larger collection of wound isolates collected during 2011-2013 and were analysed for the presence of >230 resistance determinants using a broad-spectrum DNA microarray. These isolates were chosen to represent the species most commonly found in wound isolates referred during this time and to include some of the most resistant strains. Resistance determinants detected among the staphylococci included blaZ (90%), mecA (100%), erm(B) (70%), erm(C) (20%), tet(38) (90%), tet(K) (40%), tet(Lp) (10%), tet(M) (20%), lnu(A)/lin(A) and lnu(B)/lin(B) (10% each), msr(A)/msr(B)/msr(SA) (10%), norA (80%) and dfrA (10%). Eleven different ß-lactamase genes were detected among the Gram-negative bacteria, including genes encoding the TEM (48%), CTX-M-1 (48%), CTX-M-9 (5%), SHV (5%) and VEB (10%) families of broad-spectrum and extended-spectrum ß-lactamase enzymes, as well as the carbapenemase gene blaOXA-23. Forty additional genes were also detected in the Gram-negative isolates conferring resistance to aminoglycosides (11 genes), phenicols (5 genes), macrolides [4 genes, including mph(A)/mph(K) (10%)], lincosamides [lnu(F)/lin(F), lnu(G)/lin(G)], tetracycline (4 genes), rifampicin [arr (29%)], quaternary amines [qacEΔ1 (43%)], quinolones [qnrS (14%) and qnrB (5%)], sulfonamides [sul1 (29%), sul2 (38%) and sul3 (10%)], streptothricin (sat2) and trimethoprim (6 genes). The results obtained here provide a snapshot of the broad variety of resistance determinants currently circulating within Cambodia.

20.
FEMS Microbiol Lett ; 225(2): 177-82, 2003 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12951238

RESUMEN

We report here the development of a pathogenesis model utilizing Mycobacterium marinum infection of zebrafish (Danio rerio) for the study of mycobacterial disease. The zebrafish model mimics certain aspects of human tuberculosis, such as the formation of granuloma-like lesions and the ability to establish either an acute or a chronic infection based upon inoculum. This model allows the genetics of mycobacterial disease to be studied in both pathogen and host.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum/patogenicidad , Pez Cebra/microbiología , Animales , Recuento de Colonia Microbiana , Infecciones por Mycobacterium no Tuberculosas/genética , Mycobacterium marinum/crecimiento & desarrollo , Virulencia , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA