Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(27): 16000-16008, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571910

RESUMEN

Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes present in mammals with 16 isoforms that differ in terms of catalytic activity as well as cellular and tissue distribution. CAs catalyze the conversion of CO2 to bicarbonate and protons and are involved in various physiological processes, including learning and memory. Here we report that the integrity of CA activity in the brain is necessary for the consolidation of fear extinction memory. We found that systemic administration of acetazolamide, a CA inhibitor, immediately after the extinction session dose-dependently impaired the consolidation of fear extinction memory of rats trained in contextual fear conditioning. d-phenylalanine, a CA activator, displayed an opposite action, whereas C18, a membrane-impermeable CA inhibitor that is unable to reach the brain tissue, had no effect. Simultaneous administration of acetazolamide fully prevented the procognitive effects of d-phenylalanine. Whereas d-phenylalanine potentiated extinction, acetazolamide impaired extinction also when infused locally into the ventromedial prefrontal cortex, basolateral amygdala, or hippocampal CA1 region. No effects were observed when acetazolamide or d-phenylalanine was infused locally into the substantia nigra pars compacta. Moreover, systemic administration of acetazolamide immediately after the extinction training session modulated c-Fos expression on a retention test in the ventromedial prefrontal cortex of rats trained in contextual fear conditioning. These findings reveal that the engagement of CAs in some brain regions is essential for providing the brain with the resilience necessary to ensure the consolidation of extinction of emotionally salient events.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Miedo/fisiología , Memoria/fisiología , Animales , Complejo Nuclear Basolateral/fisiología , Región CA1 Hipocampal/fisiología , Emociones , Aprendizaje , Masculino , Ratones , Corteza Prefrontal/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar
2.
Proc Natl Acad Sci U S A ; 116(19): 9644-9651, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010921

RESUMEN

Psychological stress during adolescence may cause enduring cognitive deficits and anxiety in both humans and animals, accompanied by rearrangement of numerous brain structures and functions. A healthy diet is essential for proper brain development and maintenance of optimal cognitive functions during adulthood. Furthermore, nutritional components profoundly affect the intestinal community of microbes that may affect gut-brain communication. We adopted a relatively mild stress protocol, social instability stress, which when repeatedly administered to juvenile rats modifies cognitive behaviors and plasticity markers in the brain. We then tested the preventive effect of a prolonged diet enriched with the ω-3 polyunsaturated fatty acids eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid and vitamin A. Our findings highlight the beneficial effects of this enriched diet on cognitive memory impairment induced by social instability stress, as stressed rats fed the enriched diet exhibited performance undistinguishable from that of nonstressed rats on both emotional and reference memory tests. Furthermore, in stressed rats, the decline in brain-derived neurotrophic factor expression in the hippocampus and shifts in the microbiota composition were normalized by the enriched diet. The detrimental behavioral and neurochemical effects of adolescent stress, as well as the protective effect of the enriched diet, were maintained throughout adulthood, long after the exposure to the stressful environment was terminated. Taken together, our results strongly suggest a beneficial role of nutritional components in ameliorating stress-related behaviors and associated neurochemical and microbiota changes, opening possible new venues in the field of nutritional neuropsychopharmacology.


Asunto(s)
Cognición/efectos de los fármacos , Dieta , Ácidos Grasos Omega-3/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hipocampo/fisiopatología , Estrés Psicológico , Animales , Ansiedad/microbiología , Ansiedad/fisiopatología , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Estrés Psicológico/microbiología , Estrés Psicológico/fisiopatología , Estrés Psicológico/prevención & control
3.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362081

RESUMEN

The nine amino acid neuropeptide oxytocin (OXT, Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2) is one of the most studied hormones of the body [...].


Asunto(s)
Aminoácidos , Fragmentos de Péptidos , Secuencia de Aminoácidos
4.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055048

RESUMEN

Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc-/-) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc-/- and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.


Asunto(s)
Dieta , Disbiosis , Microbioma Gastrointestinal , Histamina/metabolismo , Conducta Social , Estrés Psicológico , Animales , Conducta Animal , Biomarcadores , Peso Corporal , Citocinas/metabolismo , Ácidos Grasos/metabolismo , Expresión Génica , Hipocampo/metabolismo , Hipocampo/fisiopatología , Locomoción , Masculino , Metagenoma , Metagenómica , Ratones , Ratones Noqueados , Modelos Animales
5.
J Enzyme Inhib Med Chem ; 36(1): 719-726, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33648390

RESUMEN

Carbonic anhydrases (CAs, EC 4.2.1.1) activators were shown to be involved in memory enhancement and learning in animal models of cognition. Here we investigated the CA activating effects of a large series of histamine based compounds, including histamine receptors (H1R - H4R) agonists, antagonists and other derivatives of this autacoid. CA activators may be thus useful for improving cognition as well as in diverse therapeutic areas (phobias, obsessive-compulsive disorder, generalised anxiety, post-traumatic stress disorders), for which activation of this enzyme was recently shown to be involved.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Trastornos del Conocimiento/tratamiento farmacológico , Emociones/efectos de los fármacos , Agonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , Memoria/efectos de los fármacos , Anhidrasas Carbónicas/genética , Agonistas de los Receptores Histamínicos/química , Antagonistas de los Receptores Histamínicos/química , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Estructura Molecular
6.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638587

RESUMEN

Unresolved inflammation represents a central feature of different human pathologies including neuropsychiatric, cardiovascular, and metabolic diseases. The epidemiologic relevance of such disorders justifies the increasing interest in further understanding the mechanisms underpinning the inflammatory process occurring in such chronic diseases to provide potential novel pharmacological approaches. The most common and effective therapies for controlling inflammation are glucocorticoids; however, a variety of other molecules have been demonstrated to have an anti-inflammatory potential, including neuropeptides. In recent years, the oxytocinergic system has seen an explosion of scientific studies, demonstrating its potential to contribute to a variety of physiological processes including inflammation. Therefore, the aim of the present review was to understand the role of oxytocin in the modulation of inflammation occurring in different chronic diseases. The criterion we used to select the diseases was based on the emerging literature showing a putative involvement of the oxytocinergic system in inflammatory processes in a variety of pathologies including neurological, gastrointestinal and cardiovascular disorders, diabetes and obesity. The evidence reviewed here supports a beneficial role of oxytocin in the control of both peripheral and central inflammatory response happening in the aforementioned pathologies. Although future studies are necessary to elucidate the mechanistic details underlying such regulation, this review supports the idea that the modulation of the endogenous oxytocinergic system might represent a new potential pharmacological approach for the treatment of inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Oxitocina/metabolismo , Animales , Enfermedad Crónica , Humanos
7.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576161

RESUMEN

Several psychiatric conditions such as phobias, generalized anxiety, and post-traumatic stress disorder (PTSD) are characterized by pathological fear and anxiety. The main therapeutic approach used in the management of these disorders is exposure-based therapy, which is conceptually based upon fear extinction with the formation of a new safe memory association, allowing the reduction in behavioral conditioned fear responses. Nevertheless, this approach is only partially resolutive, since many patients have difficulty following the demanding and long process, and relapses are frequently observed over time. One strategy to improve the efficacy of the cognitive therapy is the combination with pharmacological agents. Therefore, the identification of compounds able to strengthen the formation and persistence of the inhibitory associations is a key goal. Recently, growing interest has been aroused by the neuropeptide oxytocin (OXT), which has been shown to have anxiolytic effects. Furthermore, OXT receptors and binding sites have been found in the critical brain structures involved in fear extinction. In this review, the recent literature addressing the complex effects of OXT on fear extinction at preclinical and clinical levels is discussed. These studies suggest that the OXT roles in fear behavior are due to its local effects in several brain regions, most notably, distinct amygdaloid regions.


Asunto(s)
Miedo/fisiología , Oxitocina/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Animales , Sitios de Unión , Extinción Psicológica , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Masculino , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Ratas Wistar , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/fisiología
8.
J Enzyme Inhib Med Chem ; 35(1): 1206-1214, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32401069

RESUMEN

Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which use CO2 as substrate, catalysing its interconversion to bicarbonate and a proton. In humans 15 CAs are expressed, 12 of which are catalytically active: the cytosolic CA I-III, VII, XIII, the membrane-bound CA IV, the mitochondrial CA VA and VB, the secreted CA VI, and the transmembrane CA IX, XII, XIV. Nine isoforms are present in the mammalian brain. Evidence supporting that CA inhibitors impair memory in humans has come from studies on topiramate and acetazolamide during acute high-altitude exposure. In contrast, administration of CA activators in animal models enhances memory and learning. Here we review the involvement of selective CA inhibition/activation in cognition-related disorders. CAs may represent a crucial family of new targets for improving cognition as well as in therapeutic areas, such as phobias, obsessive-compulsive disorder, generalised anxiety, and post-traumatic stress disorders, for which few efficient therapies are available.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Trastornos del Conocimiento/tratamiento farmacológico , Emociones , Encéfalo/enzimología , Trastornos del Conocimiento/enzimología , Trastornos del Conocimiento/metabolismo , Humanos , Relación Estructura-Actividad
9.
Proc Natl Acad Sci U S A ; 113(19): E2714-20, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27118833

RESUMEN

Retrieval represents a dynamic process that may require neuromodulatory signaling. Here, we report that the integrity of the brain histaminergic system is necessary for retrieval of inhibitory avoidance (IA) memory, because rats depleted of histamine through lateral ventricle injections of α-fluoromethylhistidine (a-FMHis), a suicide inhibitor of histidine decarboxylase, displayed impaired IA memory when tested 2 d after training. a-FMHis was administered 24 h after training, when IA memory trace was already formed. Infusion of histamine in hippocampal CA1 of brain histamine-depleted rats (hence, amnesic) 10 min before the retention test restored IA memory but was ineffective when given in the basolateral amygdala (BLA) or the ventral medial prefrontal cortex (vmPFC). Intra-CA1 injections of selective H1 and H2 receptor agonists showed that histamine exerted its effect by activating the H1 receptor. Noteworthy, the H1 receptor antagonist pyrilamine disrupted IA memory retrieval in rats, thus strongly supporting an active involvement of endogenous histamine; 90 min after the retention test, c-Fos-positive neurons were significantly fewer in the CA1s of a-FMHis-treated rats that displayed amnesia compared with in the control group. We also found reduced levels of phosphorylated cAMP-responsive element binding protein (pCREB) in the CA1s of a-FMHis-treated animals compared with in controls. Increases in pCREB levels are associated with retrieval of associated memories. Targeting the histaminergic system may modify the retrieval of emotional memory; hence, histaminergic ligands might reduce dysfunctional aversive memories and improve the efficacy of exposure psychotherapies.


Asunto(s)
Reacción de Prevención/fisiología , Hipocampo/fisiología , Histamina/metabolismo , Inhibición Psicológica , Recuerdo Mental/fisiología , Receptores Histamínicos H1/metabolismo , Animales , Masculino , Neurotransmisores/metabolismo , Ratas , Ratas Wistar
10.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554165

RESUMEN

The increase in the incidence of neurodegenerative diseases, in particular Alzheimer's Disease (AD), is a consequence of the world's population aging but unfortunately, existing treatments are only effective at delaying some of the symptoms and for a limited time. Despite huge efforts by both academic researchers and pharmaceutical companies, no disease-modifying drugs have been brought to the market in the last decades. Recently, several studies shed light on Carbonic Anhydrases (CAs, EC 4.2.1.1) as possible new targets for AD treatment. In the present review we summarized preclinical and clinical findings regarding the role of CAs and their inhibitors/activators on cognition, aging and neurodegeneration and we discuss future challenges and opportunities in the field.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Anhidrasas Carbónicas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Biomarcadores , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Anhidrasas Carbónicas/genética , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo/efectos de los fármacos
11.
Proc Natl Acad Sci U S A ; 112(19): E2536-42, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918368

RESUMEN

Recent discoveries demonstrated that recruitment of alternative brain circuits permits compensation of memory impairments following damage to brain regions specialized in integrating and/or storing specific memories, including both dorsal hippocampus and basolateral amygdala (BLA). Here, we first report that the integrity of the brain histaminergic system is necessary for long-term, but not for short-term memory of step-down inhibitory avoidance (IA). Second, we found that phosphorylation of cyclic adenosine monophosphate (cAMP) responsive-element-binding protein, a crucial mediator in long-term memory formation, correlated anatomically and temporally with histamine-induced memory retrieval, showing the active involvement of histamine function in CA1 and BLA in different phases of memory consolidation. Third, we found that exogenous application of histamine in either hippocampal CA1 or BLA of brain histamine-depleted rats, hence amnesic, restored long-term memory; however, the time frame of memory rescue was different for the two brain structures, short lived (immediately posttraining) for BLA, long lasting (up to 6 h) for the CA1. Moreover, long-term memory was formed immediately after training restoring of histamine transmission only in the BLA. These findings reveal the essential role of histaminergic neurotransmission to provide the brain with the plasticity necessary to ensure memorization of emotionally salient events, through recruitment of alternative circuits. Hence, our findings indicate that the histaminergic system comprises parallel, coordinated pathways that provide compensatory plasticity when one brain structure is compromised.


Asunto(s)
Reacción de Prevención , Complejo Nuclear Basolateral/metabolismo , Región CA1 Hipocampal/metabolismo , Histamina/metabolismo , Amnesia/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Emociones , Masculino , Memoria a Largo Plazo , Microdiálisis , Modelos Animales , Fosforilación , Ratas , Ratas Wistar , Transmisión Sináptica
12.
Int J Neuropsychopharmacol ; 20(5): 392-399, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339575

RESUMEN

Background: The integrity of the brain histaminergic system is necessary for the unfolding of homeostatic and cognitive processes through the recruitment of alternative circuits with distinct temporal patterns. We recently demonstrated that the fat-sensing lipid mediator oleoylethanolamide indirectly activates histaminergic neurons to exerts its hypophagic effects. The present experiments investigated whether histaminergic neurotransmission is necessary also for the modulation of emotional memory induced by oleoylethanolamide in a contextual fear conditioning paradigm. Methods: We examined the acute effect of i.p. administration of oleoylethanolamide immediately posttraining in the contextual fear conditioning test. Retention test was performed 72 hours after training. To test the participation of the brain histaminergic system in the cognitive effect of oleoylethanolamide, we depleted rats of brain histamine with an i.c.v. injection of alpha-fluoromethylhistidine (a suicide inhibitor of histidine decarboxylase) or bilateral intra-amygdala infusions of histamine H1 or H2 receptor antagonists. We also examined the effect of oleoylethanolamide on histamine release in the amygdala using in vivo microdialysis. Results: Posttraining administration of oleoylethanolamide enhanced freezing time at retention. This effect was blocked by both i.c.v. infusions of alpha-fluoromethylhistidine or by intra-amygdala infusions of either pyrilamine or zolantidine (H1 and H2 receptor antagonists, respectively). Microdialysis experiments showed that oleoylethanolamide increased histamine release from the amygdala of freely moving rats. Conclusions: Our results suggest that activation of the histaminergic system in the amygdala has a "permissive" role on the memory-enhancing effects of oleoylethanolamide. Hence, targeting the H1 and H2 receptors may modify the expression of emotional memory and reduce dysfunctional aversive memories as found in phobias and posttraumatic stress disorder.


Asunto(s)
Cognición/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Endocannabinoides/farmacología , Miedo/efectos de los fármacos , Histamina/metabolismo , Ácidos Oléicos/farmacología , Análisis de Varianza , Animales , Benzotiazoles/farmacología , Inhibidores Enzimáticos/farmacología , Reacción Cataléptica de Congelación/efectos de los fármacos , Histamínicos/farmacología , Hipotálamo/efectos de los fármacos , Masculino , Metilhistidinas/farmacología , Microdiálisis , Fenoxipropanolaminas/farmacología , Piperidinas/farmacología , Ratas , Ratas Wistar
13.
Proc Natl Acad Sci U S A ; 111(31): 11527-32, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049422

RESUMEN

Key factors driving eating behavior are hunger and satiety, which are controlled by a complex interplay of central neurotransmitter systems and peripheral stimuli. The lipid-derived messenger oleoylethanolamide (OEA) is released by enterocytes in response to fat intake and indirectly signals satiety to hypothalamic nuclei. Brain histamine is released during the appetitive phase to provide a high level of arousal in anticipation of feeding, and mediates satiety. However, despite the possible functional overlap of satiety signals, it is not known whether histamine participates in OEA-induced hypophagia. Using different experimental settings and diets, we report that the anorexiant effect of OEA is significantly attenuated in mice deficient in the histamine-synthesizing enzyme histidine decarboxylase (HDC-KO) or acutely depleted of histamine via interocerebroventricular infusion of the HDC blocker α-fluoromethylhistidine (α-FMH). α-FMH abolished OEA-induced early occurrence of satiety onset while increasing histamine release in the CNS with an H3 receptor antagonist-increased hypophagia. OEA augmented histamine release in the cortex of fasted mice within a time window compatible to its anorexic effects. OEA also increased c-Fos expression in the oxytocin neurons of the paraventricular nuclei of WT but not HDC-KO mice. The density of c-Fos immunoreactive neurons in other brain regions that receive histaminergic innervation and participate in the expression of feeding behavior was comparable in OEA-treated WT and HDC-KO mice. Our results demonstrate that OEA requires the integrity of the brain histamine system to fully exert its hypophagic effect and that the oxytocin neuron-rich nuclei are the likely hypothalamic area where brain histamine influences the central effects of OEA.


Asunto(s)
Encéfalo/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Histamina/metabolismo , Ácidos Oléicos/farmacología , Respuesta de Saciedad/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Endocannabinoides , Conducta Alimentaria/efectos de los fármacos , Histidina Descarboxilasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Tiempo
14.
J Neurochem ; 139(5): 691-699, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27649625

RESUMEN

The central nervous system and viscera constitute a functional ensemble, the gut-brain axis, that allows bidirectional information flow that contributes to the control of feeding behavior based not only on the homeostatic, but also on the hedonic aspects of food intake. The prevalence of eating disorders, such as anorexia nervosa, binge eating and obesity, poses an enormous clinical burden, and involves an ever-growing percentage of the population worldwide. Clinical and preclinical research is constantly adding new information to the field and orienting further studies with the aim of providing a foundation for developing more specific and effective treatment approaches to pathological conditions. A recent symposium at the XVI Congress of the Societá Italiana di Neuroscienze (SINS, 2015) 'Eating disorders: from bench to bedside and back' brought together basic scientists and clinicians with the objective of presenting novel perspectives in the neurobiology of eating disorders. Clinical studies presented by V. Ricca illustrated some genetic aspects of the psychopathology of anorexia nervosa. Preclinical studies addressed different issues ranging from the description of animal models that mimic human pathologies such as anorexia nervosa, diet-induced obesity, and binge eating disorders (T. Lutz), to novel interactions between peripheral signals and central circuits that govern food intake, mood and stress (A. Romano and G. Provensi). The gut-brain axis has received increasing attention in the recent years as preclinical studies are demonstrating that the brain and visceral organs such as the liver and guts, but also the microbiota are constantly engaged in processes of reciprocal communication, with unexpected physiological and pathological implications. Eating is controlled by a plethora of factors; genetic predisposition, early life adverse conditions, peripheral gastrointestinal hormones that act directly or indirectly on the central nervous system, all are receiving attention as they presumably contribute to the development of eating disorders.


Asunto(s)
Conducta Alimentaria/fisiología , Trastornos de Alimentación y de la Ingestión de Alimentos/metabolismo , Hormonas Gastrointestinales/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Animales , Ensayos Clínicos como Asunto/métodos , Metabolismo Energético/fisiología , Conducta Alimentaria/psicología , Trastornos de Alimentación y de la Ingestión de Alimentos/psicología , Trastornos de Alimentación y de la Ingestión de Alimentos/terapia , Humanos , Obesidad/metabolismo , Obesidad/psicología
15.
Pharmacol Res ; 113(Pt A): 100-107, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27543461

RESUMEN

Histaminergic neurons in the hypothalamic tuberomamillary nucleus (TMN) establish connections with virtually all brain areas. Recent evidence suggests that feeding-related motivation is correlated with the activation of a subpopulation of histamine neurons in the ventral TMN that project to hypothalamic and subcortical areas controlling feeding behaviour. Oleoylethanolamide (OEA) is a hypophagic lipid-amide released by the small intestine in response to daily fat intake that indirectly activates hypothalamic oxytocin-neurons in the paraventricular (PVN) and supraoptic (SON) nuclei. We recently showed that OEA requires the integrity of neuronal histamine to fully display its hypophagic effect. Here we aimed to investigate if differences exist in OEA-induced c-Fos expression in several brain regions of fasted, histidine decarboxylase (HDC)-KO mice that do not synthesize histamine, and wild type (WT) littermates. All the brain regions examined receive histaminergic innervation and are involved in different aspects of feeding behaviour. We found that OEA increased c-Fos expression in the SON, arcuate nucleus (ARC) and the amygdala of WT mice, but not HDC-KO mice, whereas neither genotype nor treatment differences were observed in the lateral and dorsomedial hypothalamus. Furthermore, oxytocin-immunostaining was markedly increased in the neurohypophysis of WT and not in HDC-KO mice. Of note, OEA increased c-Fos expression in the nucleus of solitary tract of both genotypes. Our findings suggest that the TMN serves as a relay station to elaborate peripheral signals that control homeostatic and adaptive behavioural responses.


Asunto(s)
Apetito/efectos de los fármacos , Endocannabinoides/farmacología , Histamina/metabolismo , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Ácidos Oléicos/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Conducta Alimentaria/efectos de los fármacos , Hipotálamo/metabolismo , Ratones , Neuronas/metabolismo , Oxitocina/metabolismo
16.
Int J Neuropsychopharmacol ; 18(10): pyv045, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25899065

RESUMEN

BACKGROUND: The neurobiological changes underlying depression resistant to treatments remain poorly understood, and failure to respond to selective serotonin reuptake inhibitors may result from abnormalities of neurotransmitter systems that excite serotonergic neurons, such as histamine. METHODS: Using behavioral (tail suspension test) and neurochemical (in vivo microdialysis, Western-blot analysis) approaches, here we report that antidepressant responses to selective serotonin reuptake inhibitors (citalopram or paroxetine) are abolished in mice unable to synthesize histamine due to either targeted disruption of histidine decarboxylase gene (HDC(-/-)) or injection of alpha-fluoromethylhistidine, a suicide inhibitor of this enzyme. RESULTS: In the tail suspension test, all classes of antidepressants tested reduced the immobility time of controls. Systemic reboxetine or imipramine reduced the immobility time of histamine-deprived mice as well, whereas selective serotonin reuptake inhibitors did not even though their serotonergic system is functional. In in vivo microdialysis experiments, citalopram significantly increased histamine extraneuronal levels in the cortex of freely moving mice, and methysergide, a serotonin 5-HT1/5-HT2 receptor antagonist, abolished this effect, thus suggesting the involvement of endogenous serotonin. CREB phosphorylation, which is implicated in the molecular mechanisms of antidepressant treatment, was abolished in histamine-deficient mice treated with citalopram. The CREB pathway is not impaired in HDC(-/-) mice, as administration of 8-bromoadenosine 3', 5'-cyclic monophosphate increased CREB phosphorylation, and in the tail suspension test it significantly reduced the time spent immobile by mice of both genotypes. CONCLUSIONS: Our results demonstrate that selective serotonin reuptake inhibitors selectively require the integrity of the brain histamine system to exert their preclinical responses.


Asunto(s)
Encéfalo/efectos de los fármacos , Citalopram/farmacología , Trastorno Depresivo/tratamiento farmacológico , Histamina/metabolismo , Paroxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Animales , Antidepresivos/farmacología , Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Trastorno Depresivo/metabolismo , Trastorno Depresivo Resistente al Tratamiento/metabolismo , Modelos Animales de Enfermedad , Femenino , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Masculino , Metilhistidinas/metabolismo , Metisergida/farmacología , Ratones Noqueados , Antagonistas de la Serotonina/farmacología
17.
Front Pharmacol ; 15: 1439811, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253374

RESUMEN

Background: Prolonged exposure to stress is a risk factor for the onset of several disorders. Modern life is burdened by a pervasive prevalence of stress, which represents a major societal challenge requiring new therapeutic strategies. In this context, botanical drug-based therapies can have a paramount importance. Methods: Here we studied the preventive effects of a repeated treatment (p.o. daily, 3 weeks) with a combination of Centella asiatica (200 mg/kg), Echinacea purpurea (20 mg/kg) and Zingiber officinale (150 mg/kg) standardized extracts, on the chronic social defeat stress (CSDS) deleterious outcomes. After 10 days of CSDS exposure, male mice' performances were evaluated in paradigms relevant for social (social interaction test), emotional (tail suspension test), cognitive (novel object recognition) domains as well as for pain perception (cold plate and von Frey tests) and motor skills (rotarod). Mice were then sacrificed, the spinal cords, hippocampi and frontal cortices dissected and processed for RT-PCR analysis. Results: Extracts mix treatment prevented stress-induced social aversion, memory impairment, mechanical and thermal allodynia and reduced behavioural despair independently of stress exposure. The treatment stimulated hippocampal and cortical BDNF and TrkB mRNA levels and counteracted stress-induced alterations in pro- (TNF-α, IL-1ß and IL-6) and anti-inflammatory (IL4, IL10) cytokines expression in the same areas. It also modulated expression of pain related genes (GFAP and Slc1a3) in the spinal cord. Conclusion: The treatment with the extracts mix obtained from C. asiatica, E. purpurea and Z. officinale may represent a promising strategy to promote resilience and prevent the deleterious effects induced by extended exposure to psychosocial stress.

18.
J Med Chem ; 67(5): 4170-4193, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38436571

RESUMEN

We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-ß-peptide (Aß)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aß-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.


Asunto(s)
Enfermedad de Alzheimer , Anhidrasas Carbónicas , Enfermedades Mitocondriales , Neuroblastoma , Humanos , Monoaminooxidasa/metabolismo , Especies Reactivas de Oxígeno/farmacología , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Relación Estructura-Actividad , Estrés Oxidativo , Encéfalo/metabolismo
19.
Sci Rep ; 14(1): 11283, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760416

RESUMEN

Several lines of evidence demonstrate that the brain histaminergic system is fundamental for cognitive processes and the expression of memories. Here, we investigated the effect of acute silencing or activation of histaminergic neurons in the hypothalamic tuberomamillary nucleus (TMNHA neurons) in vivo in both sexes in an attempt to provide direct and causal evidence of the necessary role of these neurons in recognition memory formation and retrieval. To this end, we compared the performance of mice in two non-aversive and non-rewarded memory tests, the social and object recognition memory tasks, which are known to recruit different brain circuitries. To directly establish the impact of inactivation or activation of TMNHA neurons, we examined the effect of specific chemogenetic manipulations during the formation (acquisition/consolidation) or retrieval of recognition memories. We consistently found that acute chemogenetic silencing of TMNHA neurons disrupts the formation or retrieval of both social and object recognition memory in males and females. Conversely, acute chemogenetic activation of TMNHA neurons during training or retrieval extended social memory in both sexes and object memory in a sex-specific fashion. These results suggest that the formation or retrieval of recognition memory requires the tonic activity of histaminergic neurons and strengthen the concept that boosting the brain histaminergic system can promote the retrieval of apparently lost memories.


Asunto(s)
Neuronas , Reconocimiento en Psicología , Animales , Femenino , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Reconocimiento en Psicología/fisiología , Histamina/metabolismo , Ratones Endogámicos C57BL , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/fisiología , Recuerdo Mental/fisiología
20.
J Med Chem ; 67(18): 16873-16898, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39283654

RESUMEN

This study introduces a novel multitargeting strategy that combines carbonic anhydrase (CA) activators and cholinesterase (ChE) inhibitors to enhance cognitive functions. A series of tacrine-based derivatives with amine/amino acid moieties were synthesized and evaluated for their dual activity on brain CA isoforms and ChEs (AChE and BChE). Several derivatives, notably compounds 26, 30, 34, and 40, demonstrated potent CA activation, particularly of hCA II and VII, and strong ChE inhibition with subnanomolar to low nanomolar IC50 values. In vivo studies using a mouse model of social recognition memory showed that these derivatives significantly improved memory consolidation at doses 10-100 times lower than the reference compounds (either alone or in combination). Molecular modeling and ADMET predictions elucidated the compound binding modes and confirmed favorable pharmacokinetic and safety profiles. The findings suggest that dual modulation of CA and ChE activities is a promising strategy for treating cognitive deficits associated with neurodegenerative and psychiatric disorders.


Asunto(s)
Encéfalo , Inhibidores de la Colinesterasa , Animales , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Ratones , Humanos , Anhidrasas Carbónicas/metabolismo , Memoria/efectos de los fármacos , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Relación Estructura-Actividad , Tacrina/farmacología , Tacrina/química , Masculino , Acetilcolinesterasa/metabolismo , Modelos Moleculares , Colinesterasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA