Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nat Mater ; 23(4): 499-505, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38321241

RESUMEN

Compressing light into nanocavities substantially enhances light-matter interactions, which has been a major driver for nanostructured materials research. However, extreme confinement generally comes at the cost of absorption and low resonator quality factors. Here we suggest an alternative optical multimodal confinement mechanism, unlocking the potential of hyperbolic phonon polaritons in isotopically pure hexagonal boron nitride. We produce deep-subwavelength cavities and demonstrate several orders of magnitude improvement in confinement, with estimated Purcell factors exceeding 108 and quality factors in the 50-480 range, values approaching the intrinsic quality factor of hexagonal boron nitride polaritons. Intriguingly, the quality factors we obtain exceed the maximum predicted by impedance-mismatch considerations, indicating that confinement is boosted by higher-order modes. We expect that our multimodal approach to nanoscale polariton manipulation will have far-reaching implications for ultrastrong light-matter interactions, mid-infrared nonlinear optics and nanoscale sensors.

2.
Opt Express ; 31(9): 13700-13707, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157252

RESUMEN

We present a new compact and robust polarization state transmitter designed to execute the BB84 quantum key distribution protocol. Our transmitter prepares polarization states using a single commercial-off-the-shelf phase modulator. Our scheme does not require global biasing to compensate thermal and mechanical drifts, as both of the system's two time-demultiplexed polarization modes share a single optical path. Furthermore, the transmitter's optical path entails a double-pass through the phase modulation device for each polarization mode, allowing multiple phase rotations to be impinged on each light pulse. We present a proof-of-concept prototype of this transmitter topology and demonstrate a mean intrinsic quantum bit error rate below 0.2% over a 5 hour measurement.

3.
Opt Express ; 31(4): 6039-6050, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823870

RESUMEN

Quantum resources can provide supersensitive performance in optical imaging. Detecting entangled photon pairs from spontaneous parametric down conversion (SPDC) with single-photon avalanche diode (SPAD) image sensor arrays (ISAs) enables practical wide-field quantum-enhanced imaging. However, matching the SPDC wavelength to the peak detection efficiency range of complementary metal-oxide-semiconductor (CMOS) compatible mass-producible SPAD-ISAs has remained technologically elusive, resulting in low imaging speeds to date. Here, we show that a recently developed visible-wavelength entangled photon source enables high-speed quantum imaging. By operating at high detection efficiency of a SPAD-ISA, we increase acquisition speed by more than an order of magnitude compared to previous similar quantum imaging demonstrations. Besides being fast, the quantum-enhanced phase imager operating at short wavelengths retrieves nanometer scale height differences, tested by imaging evaporated silica and protein microarray spots on glass samples, with sensitivity improved by a factor of 1.351 ± 0.004 over equivalent ideal classical imaging. This work represents an important stepping stone towards scalable real-world quantum imaging advantage, and may find use in biomedical and industrial applications as well as fundamental research.

4.
Opt Express ; 31(22): 37262-37274, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017859

RESUMEN

Advances in optical imaging always look for an increase in sensitivity and resolution among other practicability aspects. Within the same scope, in this work we report a versatile interference contrast imaging technique, with high phase sensitivity and a large field-of-view of several mm2. Sensitivity is increased through the use of a self-imaging non-resonant cavity, which causes photons to probe the sample in multiple rounds before being detected, where the configuration can be transmissive or reflective. Phase profiles can be resolved individually for each round thanks to a specially designed single-photon camera with time-of-flight capabilities and true pixels-off gating. Measurement noise is reduced by novel data processing combining the retrieved sample profiles from multiple rounds. Our protocol is especially useful under extremely low light conditions as required by biological or photo-sensitive samples. Results demonstrate more than a four-fold reduction in phase measurement noise, compared to single round imaging, and values close to the predicted sensitivity in case of the best possible cavity configuration, where all photons are maintained until n rounds. We also find good agreement with the theoretical predictions for low number of rounds, where experimental imperfections would play a minor role. The absence of a laser or cavity lock-in mechanism makes the technique an easy to use inspection tool.

5.
Exp Astron (Dordr) ; 51(3): 1677-1694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744306

RESUMEN

Recently, the European Commission supported by many European countries has announced large investments towards the commercialization of quantum technology (QT) to address and mitigate some of the biggest challenges facing today's digital era - e.g. secure communication and computing power. For more than two decades the QT community has been working on the development of QTs, which promise landmark breakthroughs leading to commercialization in various areas. The ambitious goals of the QT community and expectations of EU authorities cannot be met solely by individual initiatives of single countries, and therefore, require a combined European effort of large and unprecedented dimensions comparable only to the Galileo or Copernicus programs. Strong international competition calls for a coordinated European effort towards the development of QT in and for space, including research and development of technology in the areas of communication and sensing. Here, we aim at summarizing the state of the art in the development of quantum technologies which have an impact in the field of space applications. Our goal is to outline a complete framework for the design, development, implementation, and exploitation of quantum technology in space.

6.
Anal Chem ; 92(10): 6795-6800, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32295344

RESUMEN

With the alarming rise of antimicrobial resistance, studies on bacteria-surface interactions are both relevant and timely. Scanning electron microscopy and colony forming unit counting are commonly used techniques but require sophisticated sample preparation and long incubation time. Here, we present a direct method based on molecular dynamics simulation of nanostructured surfaces providing in silico predictions, complemented with time-lapse fluorescence imaging to study live interactions of bacteria at the membrane-substrate level. We evaluate its effectiveness in predicting and statistically analyzing the temporal evolution and spatial distribution of prototypical bacteria with costained nucleoids and membranes (E. coli) on surfaces with nanopillars. We observed cell reorientation, clustering, membrane damage, growth inhibition, and in the extreme case of hydrocarbon-coated nanopillars, this was followed by cell disappearance, validating the obtained simulation results. Contrary to commonly used experimental methods, microscopy data are fast processed, in less than 1 h. In particular, the bactericidal effects can be straightforwardly detected and correlated with surface morphology and/or wettability.


Asunto(s)
Antibacterianos/análisis , Simulación de Dinámica Molecular , Imagen de Lapso de Tiempo , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Propiedades de Superficie
7.
Nano Lett ; 18(9): 5913-5918, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30114919

RESUMEN

Despite its great potential for a wide variety of devices, especially mid-infrared biosensors and photodetectors, graphene plasmonics is still confined to academic research. A major reason is the fact that, so far, expensive and low-throughput lithography techniques are needed to fabricate graphene nanostructures. Here, we report for the first time a detailed experimental study on electrostatically tunable graphene nanohole array surfaces with periods down to 100 nm, showing clear plasmonic response in the range ∼1300-1600 cm-1, which can be fabricated by a scalable nanoimprint technique. Such large area plasmonic nanostructures are suitable for industrial applications, for example, surface-enhanced infrared absorption (SEIRA) sensing, as they combine easy design, extreme field confinement, and the possibility to excite multiple plasmon modes enabling multiband sensing, a feature not readily available in nanoribbons or other localized resonant structures.

8.
Opt Express ; 26(22): 28938-28947, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470063

RESUMEN

We put forward a simple, scalable and robust technique for generating periodically structured light beams with intensity patterns, e.g. of the form cos2n(kxx) cos2m(kyy), where kx and ky are real numbers that can be tailored and n and m are integers. The technique combines the use of Gaussian beams with curved wavefronts, birefringent crystals (Savart plates) and linear polarizers. Applications range from photolithography to fabrication of micro-lens array and fiber Bragg gratings, 3D printing and tailoring of optical lattices for trapping atoms and molecules.

9.
Opt Express ; 26(24): 31957-31964, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30650774

RESUMEN

We report the interferometric photodetection of a phase-diffusion quantum entropy source in a silicon photonics chip. The device uses efficient and robust single-laser accelerated phase diffusion methods, and implements the unbalanced Mach-Zehnder interferometer with optimized splitting ratio and photodetection, in a 0.5 mm×1 mm footprint. We demonstrate Gbps raw entropy-generation rates in a technology compatible with conventional CMOS fabrication techniques.

10.
Nat Mater ; 14(10): 991-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26213898

RESUMEN

The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.

11.
Langmuir ; 32(48): 12632-12640, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27808519

RESUMEN

Active surfaces are presently tailored to cause specific effects on living cells, which can be useful in many fields. Their development requires the understanding of the molecular mechanisms of interaction between lipid-enveloped entities and solid surfaces. Here, using coarse-grained molecular dynamics simulations, we have analyzed the different interaction modes of coated substrates with lipid vesicles that mimic biological envelopes. For neutral and hydrophobically functionalized substrates, three action modes on contacting vesicles have been obtained including intact, partially broken, and completely destroyed vesicles. The molecular mechanisms for each interaction pathway and the corresponding energy balances have been analyzed in detail. Interestingly, we have shown that any specific action mode can be obtained by appropriately tailoring the wetting characteristics of the surface coating. In particular, we have shown that surfaces that are simultaneously hydrophobic and oleophilic are optimal to fully disrupt the contacting vesicle lipid bilayer.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos/química , Simulación de Dinámica Molecular , Colina/química , Simulación por Computador , Interacciones Hidrofóbicas e Hidrofílicas , Fosfatidilcolinas/química , Temperatura , Agua/química , Humectabilidad
12.
Phys Rev Lett ; 115(25): 250403, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26722907

RESUMEN

We demonstrate extraction of randomness from spontaneous-emission events less than 36 ns in the past, giving output bits with excess predictability below 10^{-5} and strong metrological randomness assurances. This randomness generation strategy satisfies the stringent requirements for unpredictable basis choices in current "loophole-free Bell tests" of local realism [Hensen et al., Nature (London) 526, 682 (2015); Giustina et al., this issue, Phys. Rev. Lett. 115, 250401 (2015); Shalm et al., preceding Letter, Phys. Rev. Lett. 115, 250402 (2015)].

13.
Phys Rev Lett ; 115(25): 250401, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26722905

RESUMEN

Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-31}, corresponding to an 11.5 standard deviation effect.

14.
Phys Rev Lett ; 115(25): 250402, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26722906

RESUMEN

We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

15.
Nano Lett ; 14(8): 4677-81, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24988148

RESUMEN

Optical surfaces that can repel both water and oil have much potential for applications in a diverse array of technologies including self-cleaning solar panels, anti-icing windows and windshields for automobiles and aircrafts, low-drag surfaces, and antismudge touch screens. By exploiting a hierarchical geometry made of two-tier nanostructures, primary nanopillars of length scale ∼ 100-200 nm superposed with secondary branching nanostructures made of nanoparticles of length scale ∼ 10-30 nm, we have achieved static contact angles of more than 170° and 160° for water and oil, respectively, while the sliding angles were lower than 4°. At the same time, with respect to the initial flat bare glass, the nanotextured surface presented significantly reduced reflection (<0.5%), increased transmission (93.8% average over the 400 to 700 nm wavelength range), and very low scattering values (about 1% haze). To the authors' knowledge, these are the highest optical performances in conjunction with superomniphobicity reported to date in the literature. The primary nanopillars are monolithically integrated in the glass surface using lithography-free metal dewetting followed by reactive ion etching,1 while the smaller and higher surface area branching structure made of secondary nanoparticles are deposited by the NanoSpray2 combustion chemical vapor deposition (CCVD).

16.
ACS Photonics ; 11(5): 1873-1886, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38766501

RESUMEN

In this paper, we demonstrate a novel optical characterization method for ultrathin semitransparent and absorbing materials through multispectral intensity and phase imaging. The method is based on a lateral-shearing interferometric microscopy (LIM) technique, where phase-shifting allows extraction of both the intensity and the phase of transmitted optical fields. To demonstrate the performance in characterizing semitransparent thin films, we fabricated and measured cupric oxide (CuO) seeded gold ultrathin metal films (UTMFs) with mass-equivalent thicknesses from 2 to 27 nm on fused silica substrates. The optical properties were modeled using multilayer thin film interference and a parametric model of their complex refractive indices. The UTMF samples were imaged in the spectral range from 475 to 750 nm using the proposed LIM technique, and the model parameters were fitted to the measured data in order to determine the respective complex refractive indices for varying thicknesses. Overall, by using the combined intensity and phase not only for imaging and quality control but also for determining the material properties, such as complex refractive indices, this technique demonstrates a high potential for the characterization of the optical properties, of (semi-) transparent thin films.

17.
ACS Appl Mater Interfaces ; 16(15): 19672-19680, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38576132

RESUMEN

Traditional multilayer antireflection (AR) surfaces are of significant importance for numerous applications, such as laser optics, camera lenses, and eyeglasses. Recently, technological advances in the fabrication of biomimetic AR surfaces capable of delivering broadband omnidirectional high transparency combined with self-cleaning properties have opened an alternative route toward realization of multifunctional surfaces which would be beneficial for touchscreen displays or solar harvesting devices. However, achieving the desired surface properties often requires sophisticated lithography fabrication methods consisting of multiple steps. In the present work, we show the design and implementation of mechanically robust AR surfaces fabricated by a lithography-free process using thermally dewetted silver as an etching mask. Both-sided nanohole (NH) surfaces exhibit transmittance above 99% in the visible or the near-infrared ranges combined with improved angular response at an angle of incidence of up to θi = 60°. Additionally, the NHs demonstrate excellent mechanical resilience against repeated abrasion with cheesecloth due to favorable redistribution of the shearing mechanical forces, making them a viable option for touchscreen display applications.

18.
Opt Express ; 21(10): 11943-51, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23736416

RESUMEN

We demonstrate a compact, robust, and highly efficient source of polarization-entangled photons, based on linear bi-directional down-conversion in a novel 'folded sandwich' configuration. Bi-directionally pumping a single periodically poled KTiOPO(4) (ppKTP) crystal with a 405-nm laser diode, we generate entangled photon pairs at the non-degenerate wavelengths 784 nm (signal) and 839 nm (idler), and achieve an unprecedented detection rate of 11.8 kcps for 10.4 µW of pump power (1.1 million pairs / mW), in a 2.9-nm bandwidth, while maintaining a very high two-photon entanglement quality, with a Bell-state fidelity of 99.3 ± 0.3%.


Asunto(s)
Láseres de Estado Sólido , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Modelos Lineales , Fotones
19.
ACS Appl Mater Interfaces ; 15(12): 16204-16210, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36939564

RESUMEN

Ultrathin metal films (UTMFs) are used in a wide range of applications, from transparent electrodes to infrared mirrors and metasurfaces. Due to their small thickness (<5 nm), the electrical and optical properties of UTMFs can be changed by external stimuli, for example, by applying an electric field through an ion gel. It is also known that oxidized thin films and nanostructures of Au can be reduced by irradiating with short-wavelength light. Here we show that the resistance, reflectance, and resonant optical response of Au UTMFs is changed significantly by ultraviolet light. More specifically, photoreduction and oxidation processes can be sequentially applied for continuous tuning, with observed modulation ranges for sheet resistance (Rs) and reflectance of more than 40% and 30%, respectively. The proposed method has the potential for achieving reconfigurable UTMF structures and trimming their response to specific working points, e.g., a predetermined resonance wavelength and amplitude. This is also important for large scale deployment of such surfaces as one can compensate material nonuniformity, morphological, and structural dimension errors occurring during fabrication.

20.
ACS Nano ; 17(8): 7377-7383, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37010352

RESUMEN

Photonic crystals and metamaterials are two overarching paradigms for manipulating light. By combining these approaches, hypercrystals can be created, which are hyperbolic dispersion metamaterials that undergo periodic modulation and mix photonic-crystal-like aspects with hyperbolic dispersion physics. Despite several attempts, there has been limited experimental realization of hypercrystals due to technical and design constraints. In this work, hypercrystals with nanoscale lattice constants ranging from 25 to 160 nm were created. The Bloch modes of these crystals were then measured directly using scattering near-field microscopy. The dispersion of the Bloch modes was extracted from the frequency dependence of the Bloch modes, revealing a clear switch from positive to negative group velocity. Furthermore, spectral features specific to hypercrystals were observed in the form of sharp density of states peaks, which are a result of intermodal coupling and should not appear in ordinary polaritonic crystals with an equivalent geometry. These findings are in agreement with theoretical predictions that even simple lattices can exhibit a rich hypercrystal bandstructure. This work is of both fundamental and practical interest, providing insight into nanoscale light-matter interactions and the potential to manipulate the optical density of states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA