Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Plant Cell ; 35(5): 1532-1547, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36705512

RESUMEN

DNA-protein cross-links (DPCs) are highly toxic DNA lesions consisting of proteins covalently attached to chromosomal DNA. Unrepaired DPCs physically block DNA replication and transcription. Three DPC repair pathways have been identified in Arabidopsis (Arabidopsis thaliana) to date: the endonucleolytic cleavage of DNA by the structure-specific endonuclease MUS81; proteolytic degradation of the crosslinked protein by the metalloprotease WSS1A; and cleavage of the cross-link phosphodiester bonds by the tyrosyl phosphodiesterases TDP1 and TDP2. Here we describe the evolutionary conserved STRUCTURAL MAINTENANCE OF CHROMOSOMEs SMC5/6 complex as a crucial component involved in DPC repair. We identified multiple alleles of the SMC5/6 complex core subunit gene SMC6B via a forward-directed genetic screen designed to identify the factors involved in the repair of DPCs induced by the cytidine analog zebularine. We monitored plant growth and cell death in response to DPC-inducing chemicals, which revealed that the SMC5/6 complex is essential for the repair of several types of DPCs. Genetic interaction and sensitivity assays showed that the SMC5/6 complex works in parallel to the endonucleolytic and proteolytic pathways. The repair of zebularine-induced DPCs was associated with SMC5/6-dependent SUMOylation of the damage sites. Thus, we present the SMC5/6 complex as an important factor in plant DPC repair.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Sumoilación , Reparación del ADN/genética , Daño del ADN , Proteínas/metabolismo , ADN/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Plant J ; 118(1): 277-287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38113345

RESUMEN

Previously, it has been shown that mutagenesis frequencies can be improved by directly fusing the human exonuclease TREX2 to Cas9, resulting in a strong increase in the frequency of smaller deletions at the cut site. Here, we demonstrate that, by using the SunTag system for recruitment of TREX2, the mutagenesis efficiency can be doubled in comparison to the direct fusion in Arabidopsis thaliana. Therefore, we also tested the efficiency of the system for targeted deletion formation by recruiting two other 3'-5' exonucleases, namely the human TREX1 and E. coli ExoI. It turns out that SunTag-mediated recruitment of TREX1 not only improved the general mutation induction efficiency slightly in comparison to TREX2, but that, more importantly, the mean size of the induced deletions was also enhanced, mainly via an increase of deletions of 25 bp or more. EcExoI also yielded a higher amount of larger deletions. However, only in the case of TREX1 and TREX2, the effect was predominately SunTag-dependent, indicating efficient target-specific recruitment. Using SunTag-mediated TREX1 recruitment at other genomic sites, we were able to obtain similar deletion patterns. Thus, we were able to develop an attractive novel editing tool that is especially useful for obtaining deletions in the range from 20 to 40 bp around the cut site. Such sizes are often required for the manipulation of cis-regulatory elements. This feature is closing an existing gap as previous approaches, based on single nucleases or paired nickases or nucleases, resulted in either shorter or longer deletions, respectively.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagénesis , Mutación , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Edición Génica
3.
Plant J ; 118(1): 242-254, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38179887

RESUMEN

In eukaryotes, double-strand breaks (DSBs) are either repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). In somatic plant cells, HR is very inefficient. Therefore, the vast majority of DSBs are repaired by two different pathways of NHEJ. The classical (cNHEJ) pathway depends on the heterodimer KU70/KU80, while polymerase theta (POLQ) is central to the alternative (aNHEJ) pathway. Surprisingly, Arabidopsis plants are viable, even when both pathways are impaired. However, they exhibit severe growth retardation and reduced fertility. Analysis of mitotic anaphases indicates that the double mutant is characterized by a dramatic increase in chromosome fragmentation due to defective DSB repair. In contrast to the single mutants, the double mutant was found to be highly sensitive to the DSB-inducing genotoxin bleomycin. Thus, both pathways can complement for each other efficiently in DSB repair. We speculated that in the absence of both NHEJ pathways, HR might be enhanced. This would be especially attractive for gene targeting (GT) in which predefined changes are introduced using a homologous template. Unexpectedly, the polq single mutant as well as the double mutant showed significantly lower GT frequencies in comparison to wildtype plants. Accordingly, we were able to show that elimination of both NHEJ pathways does not pose an attractive approach for Agrobacterium-mediated GT. However, our results clearly indicate that a loss of cNHEJ leads to an increase in GT frequency, which is especially drastic and attractive for practical applications, in which the in planta GT strategy is used.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Reparación del ADN/genética , Marcación de Gen , Reparación del ADN por Unión de Extremidades
4.
Plant Cell ; 34(1): 287-301, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34524446

RESUMEN

DNA-protein crosslinks (DPCs) and DNA double-stranded breaks (DSBs), including those produced by stalled topoisomerase 2 cleavage complexes (TOP2ccs), must be repaired to ensure genome stability. The basic mechanisms of TOP2cc repair have been characterized in other eukaryotes, but we lack information for plants. Using CRISPR/Cas-induced mutants, we show that Arabidopsis thaliana has two main TOP2cc repair pathways: one is defined by TYROSYL-DNA-PHOSPHODIESTERASE 2 (TDP2), which hydrolyzes TOP2-DNA linkages, the other by the DNA-dependent protease WSS1A (a homolog of human SPARTAN/yeast weak suppressor of smt3 [Wss1]), which also functions in DPC repair. TDP1 and TDP2 function nonredundantly in TOP1cc repair, indicating that they act specifically on their respective stalled cleavage complexes. The nuclease METHYL METHANESULFONATE AND UV-SENSITIVE PROTEIN 81 (MUS81) plays a major role in global DPC repair and a minor role in TOP2cc repair. DSBs arise as intermediates of TOP2cc repair and are repaired by classical and alternative nonhomologous end joining (NHEJ) pathways. Double-mutant analysis indicates that "clean" DNA ends caused by TDP2 hydrolysis are mainly religated by classical NHEJ, which helps avoid mutation. In contrast, the mutagenic alternative NHEJ pathway mainly processes nonligateable DNA ends. Thus, TDP2 promotes maintenance of plant genome integrity by error-free repair of TOP2cc.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ADN-Topoisomerasas/genética , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , ADN-Topoisomerasas/metabolismo
5.
Plant Biotechnol J ; 22(2): 401-412, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37864303

RESUMEN

The ErCas12a nuclease, also known as MAD7, is part of a CRISPR/Cas system from Eubacterium rectale and distantly related to Cas12a nucleases. As it shares only 31% sequence homology with the commonly used AsCas12a, its intellectual property may not be covered by the granted patent rights for Cas12a nucleases. Thus, ErCas12a became an attractive alternative for practical applications. However, the editing efficiency of ErCas12a is strongly target sequence- and temperature-dependent. Therefore, optimization of the enzyme activity through protein engineering is especially attractive for its application in plants, as they are cultivated at lower temperatures. Based on the knowledge obtained from the optimization of Cas12a nucleases, we opted to improve the gene editing efficiency of ErCas12a by introducing analogous amino acid exchanges. Interestingly, neither of these mutations analogous to those in the enhanced or Ultra versions of AsCas12a resulted in significant editing enhancement of ErCas12a in Arabidopsis thaliana. However, two different mutations, V156R and K172R, in putative alpha helical structures of the enzyme showed a detectable improvement in editing. By combining these two mutations, we obtained an improved ErCas12a (imErCas12a) variant, showing several-fold increase in activity in comparison to the wild-type enzyme in Arabidopsis. This variant yields strong editing efficiencies at 22 °C which could be further increased by raising the cultivation temperature to 28 °C and even enabled editing of formerly inaccessible targets. Additionally, no enhanced off-site activity was detected. Thus, imErCas12a is an economically attractive and efficient alternative to other CRISPR/Cas systems for plant genome engineering.


Asunto(s)
Arabidopsis , Edición Génica , Arabidopsis/metabolismo , Sistemas CRISPR-Cas/genética , Endonucleasas/genética
6.
New Phytol ; 241(2): 541-552, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984056

RESUMEN

Spontaneous chromosomal rearrangements (CRs) play an essential role in speciation, genome evolution and crop domestication. To be able to use the potential of CRs for breeding, plant chromosome engineering was initiated by fragmenting chromosomes by X-ray irradiation. With the rise of the CRISPR/Cas system, it became possible to induce double-strand breaks (DSBs) in a highly efficient manner at will at any chromosomal position. This has enabled a completely new level of predesigned chromosome engineering. The genetic linkage between specific genes can be broken by inducing chromosomal translocations. Natural inversions, which suppress genetic exchange, can be reverted for breeding. In addition, various approaches for constructing minichromosomes by downsizing regular standard A or supernumerary B chromosomes, which could serve as future vectors in plant biotechnology, have been developed. Recently, a functional synthetic centromere could be constructed. Also, different ways of genome haploidization have been set up, some based on centromere manipulations. In the future, we expect to see even more complex rearrangements, which can be combined with previously developed engineering technologies such as recombinases. Chromosome engineering might help to redefine genetic linkage groups, change the number of chromosomes, stack beneficial genes on mini cargo chromosomes, or set up genetic isolation to avoid outcrossing.


Asunto(s)
Cromosomas de las Plantas , Ingeniería Genética , Cromosomas de las Plantas/genética , Fitomejoramiento , Biotecnología , Centrómero/genética
7.
Plant Cell ; 33(11): 3454-3469, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34375428

RESUMEN

In nature, single-strand breaks (SSBs) in DNA occur more frequently (by orders of magnitude) than double-strand breaks (DSBs). SSBs induced by the CRISPR/Cas9 nickase at a distance of 50-100 bp on opposite strands are highly mutagenic, leading to insertions/deletions (InDels), with insertions mainly occurring as direct tandem duplications. As short tandem repeats are overrepresented in plant genomes, this mechanism seems to be important for genome evolution. We investigated the distance at which paired 5'-overhanging SSBs are mutagenic and which DNA repair pathways are essential for insertion formation in Arabidopsis thaliana. We were able to detect InDel formation up to a distance of 250 bp, although with much reduced efficiency. Surprisingly, the loss of the classical nonhomologous end joining (NHEJ) pathway factors KU70 or DNA ligase 4 completely abolished tandem repeat formation. The microhomology-mediated NHEJ factor POLQ was required only for patch-like insertions, which are well-known from DSB repair as templated insertions from ectopic sites. As SSBs can also be repaired using homology, we furthermore asked whether the classical homologous recombination (HR) pathway is involved in this process in plants. The fact that RAD54 is not required for homology-mediated SSB repair demonstrates that the mechanisms for DSB- and SSB-induced HR differ in plants.


Asunto(s)
Arabidopsis/genética , Roturas del ADN de Cadena Simple , Reparación del ADN , ADN de Plantas/genética , Genoma de Planta , ADN de Plantas/química
8.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782125

RESUMEN

The synaptonemal complex is a tripartite proteinaceous ultrastructure that forms between homologous chromosomes during prophase I of meiosis in the majority of eukaryotes. It is characterized by the coordinated installation of transverse filament proteins between two lateral elements and is required for wild-type levels of crossing over and meiotic progression. We have generated null mutants of the duplicated Arabidopsis transverse filament genes zyp1a and zyp1b using a combination of T-DNA insertional mutants and targeted CRISPR/Cas mutagenesis. Cytological and genetic analysis of the zyp1 null mutants reveals loss of the obligate chiasma, an increase in recombination map length by 1.3- to 1.7-fold and a virtual absence of cross-over (CO) interference, determined by a significant increase in the number of double COs. At diplotene, the numbers of HEI10 foci, a marker for Class I interference-sensitive COs, are twofold greater in the zyp1 mutant compared to wild type. The increase in recombination in zyp1 does not appear to be due to the Class II interference-insensitive COs as chiasmata were reduced by ∼52% in msh5/zyp1 compared to msh5 These data suggest that ZYP1 limits the formation of closely spaced Class I COs in Arabidopsis Our data indicate that installation of ZYP1 occurs at ASY1-labeled axial bridges and that loss of the protein disrupts progressive coalignment of the chromosome axes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Intercambio Genético , Arabidopsis , Proteínas de Arabidopsis/genética , Meiosis , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
9.
New Phytol ; 239(5): 2041-2052, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381079

RESUMEN

The application of the CRISPR/Cas system as a biotechnological tool for genome editing has revolutionized plant biology. Recently, the repertoire was expanded by CRISPR-Kill, enabling CRISPR/Cas-mediated tissue engineering through genome elimination by tissue-specific expression. Using the Cas9 nuclease from Staphylococcus aureus (SaCas9), CRISPR-Kill relies on the induction of multiple double-strand breaks (DSBs) in conserved repetitive genome regions, such as the rDNA, causing cell death of the targeted cells. Here, we show that in addition to spatial control by tissue-specific expression, temporal control of CRISPR-mediated cell death is feasible in Arabidopsis thaliana. We established a chemically inducible tissue-specific CRISPR-Kill system that allows the simultaneous detection of targeted cells by fluorescence markers. As proof of concept, we were able to eliminate lateral roots and ablate root stem cells. Moreover, using a multi-tissue promoter, we induced targeted cell death at defined time points in different organs at select developmental stages. Thus, using this system makes it possible to gain new insights into the developmental plasticity of certain cell types. In addition to enabling tissue engineering in plants, our system provides an invaluable tool to study the response of developing plant tissue to cell elimination through positional signaling and cell-to-cell communication.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Edición Génica , Sistemas CRISPR-Cas/genética , Genoma , Plantas/genética
10.
Plant Physiol ; 188(4): 1769-1779, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-34893907

RESUMEN

Although clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated gene editing has revolutionized biology and plant breeding, large-scale, heritable restructuring of plant chromosomes is still in its infancy. Duplications and inversions within a chromosome, and also translocations between chromosomes, can now be achieved. Subsequently, genetic linkages can be broken or can be newly created. Also, the order of genes on a chromosome can be changed. While natural chromosomal recombination occurs by homologous recombination during meiosis, CRISPR/Cas-mediated chromosomal rearrangements can be obtained best by harnessing nonhomologous end joining (NHEJ) pathways in somatic cells. NHEJ can be subdivided into the classical (cNHEJ) and alternative NHEJ (aNHEJ) pathways, which partially operate antagonistically. The cNHEJ pathway not only protects broken DNA ends from degradation but also suppresses the joining of previously unlinked broken ends. Hence, in the absence of cNHEJ, more inversions or translocations can be obtained which can be ascribed to the unrestricted use of the aNHEJ pathway for double-strand break (DSB) repair. In contrast to inversions or translocations, short tandem duplications can be produced by paired single-strand breaks via a Cas9 nickase. Interestingly, the cNHEJ pathway is essential for these kinds of duplications, whereas aNHEJ is required for patch insertions that can also be formed during DSB repair. As chromosome engineering has not only been accomplished in the model plant Arabidopsis (Arabidopsis thaliana) but also in the crop maize (Zea mays), we expect that this technology will soon transform the breeding process.


Asunto(s)
Sistemas CRISPR-Cas , Cromosomas de las Plantas , Sistemas CRISPR-Cas/genética , Cromosomas de las Plantas/genética , Reparación del ADN por Unión de Extremidades/genética , Edición Génica , Fitomejoramiento
11.
Plant J ; 106(4): 965-977, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33619799

RESUMEN

The RTR (RecQ/Top3/Rmi1) complex has been elucidated as essential for ensuring genome stability in eukaryotes. Fundamental for the dissolution of Holliday junction (HJ)-like recombination intermediates, the factors have been shown to play further, partly distinct roles in DNA repair and homologous recombination. Across all kingdoms, disruption of this complex results in characteristic phenotypes including hyper-recombination and sensitivity to genotoxins. The type IA topoisomerase TOP3α has been shown as essential for viability in various animals. In contrast, in the model plant species Arabidopsis, the top3α mutant is viable. rmi1 mutants are deficient in the repair of DNA damage. Moreover, as opposed to other eukaryotes, TOP3α and RMI1 were found to be indispensable for proper meiotic progression, with mutants showing severe meiotic defects and sterility. We now established mutants of both TOP3α and RMI1 in tomato using CRISPR/Cas technology. Surprisingly, we found phenotypes that differed dramatically from those of Arabidopsis: the top3α mutants proved to be embryo-lethal, implying an essential role of the topoisomerase in tomato. In contrast, no defect in somatic DNA repair or meiosis was detectable for rmi1 mutants in tomato. This points to a differentiation of function of RTR complex partners between plant species. Our results indicate that there are relevant differences in the roles of basic factors involved in DNA repair and meiosis within dicotyledons, and thus should be taken as a note of caution when generalizing knowledge regarding basic biological processes obtained in the model plant Arabidopsis for the entire plant kingdom.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Reparación del ADN/genética , Meiosis/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Inestabilidad Genómica , Recombinación Homóloga , Solanum lycopersicum/enzimología , Solanum lycopersicum/fisiología , Mutación , Fenotipo , Proteínas de Plantas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
12.
New Phytol ; 233(3): 1172-1187, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761387

RESUMEN

The protease WSS1A is an important factor in the repair of DNA-protein crosslinks in plants. Here we show that the loss of WSS1A leads to a reduction of 45S rDNA repeats and chromosomal fragmentation in Arabidopsis. Moreover, in the absence of any factor of the RTR (RECQ4A/TOP3α/RMI1/2) complex, which is involved in the dissolution of DNA replication intermediates, WSS1A becomes essential for viability. If WSS1A loss is combined with loss of the classical (c) or alternative (a) nonhomologous end joining (NHEJ) pathways of double-strand break (DSB) repair, the resulting mutants show proliferation defects and enhanced chromosome fragmentation, which is especially aggravated in the absence of aNHEJ. This indicates that WSS1A is involved either in the suppression of DSB formation or in DSB repair itself. To test the latter we induced DSB by CRISPR/Cas9 at different loci in wild-type and mutant cells and analyzed their repair by deep sequencing. However, no change in the quality of the repair events and only a slight increase in their quantity was found. Thus, by removing complex DNA-protein structures, WSS1A seems to be required for the repair of replication intermediates which would otherwise be resolved into persistent DSB leading to genome instability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Péptido Hidrolasas/metabolismo
13.
Plant Cell ; 31(4): 775-790, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30760561

RESUMEN

DNA-protein crosslinks (DPCs) represent a severe threat to the genome integrity; however, the main mechanisms of DPC repair were only recently elucidated in humans and yeast. Here we define the pathways for DPC repair in plants. Using CRISPR/Cas9, we could show that only one of two homologs of the universal repair proteases SPARTAN/ weak suppressor of smt3 (Wss1), WSS1A, is essential for DPC repair in Arabidopsis (Arabidopsis thaliana). WSS1A defective lines exhibit developmental defects and are hypersensitive to camptothecin (CPT) and cis-platin. Interestingly, the CRISPR/Cas9 mutants of TYROSYL-DNA PHOSPHODIESTERASE 1 (TDP1) are insensitive to CPT, and only the wss1A tdp1 double mutant reveals a higher sensitivity than the wss1A single mutant. This indicates that TDP1 defines a minor backup pathway in the repair of DPCs. Moreover, we found that knock out of the endonuclease METHYL METHANESULFONATE AND UV SENSITIVE PROTEIN 81 (MUS81) results in a strong sensitivity to DPC-inducing agents. The fact that wss1A mus81 and tdp1 mus81 double mutants exhibit growth defects and an increase in dead cells in root meristems after CPT treatment demonstrates that there are three independent pathways for DPC repair in Arabidopsis. These pathways are defined by their different biochemical specificities, as main actors, the DNA endonuclease MUS81 and the protease WSS1A, and the phosphodiesterase TDP1 as backup.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Mutación/genética
14.
PLoS Genet ; 15(5): e1008174, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31120885

RESUMEN

Proteins of the Fanconi Anemia (FA) complementation group are required for crosslink (CL) repair in humans and their loss leads to severe pathological phenotypes. Here we characterize a homolog of the Fe-S cluster helicase FANCJ in the model plant Arabidopsis, AtFANCJB, and show that it is involved in interstrand CL repair. It acts at a presumably early step in concert with the nuclease FAN1 but independently of the nuclease AtMUS81, and is epistatic to both error-prone and error-free post-replicative repair in Arabidopsis. The simultaneous knock out of FANCJB and the Fe-S cluster helicase RTEL1 leads to induced cell death in root meristems, indicating an important role of the enzymes in replicative DNA repair. Surprisingly, we found that AtFANCJB is involved in safeguarding rDNA stability in plants. In the absence of AtRTEL1 and AtFANCJB, we detected a synergetic reduction to about one third of the original number of 45S rDNA copies. It is tempting to speculate that the detected rDNA instability might be due to deficiencies in G-quadruplex structure resolution and might thus contribute to pathological phenotypes of certain human genetic diseases.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/fisiología , Replicación del ADN , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Anemia de Fanconi/genética , Inestabilidad Genómica , Meristema/metabolismo , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ARN Helicasas/genética
15.
Plant Biotechnol J ; 19(7): 1314-1324, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33511745

RESUMEN

Nicotiana tabacum is a non-food herb that has the potential to be utilized as bio-factory for generating medicines, vaccines or valuable small metabolites. To achieve these goals, the improvement of genetic tools for pre-designed genome modifications is indispensable. The development of CRISPR/Cas nucleases allows the induction of site-specific double-strand breaks to enhance homologous recombination-mediated gene targeting (GT). However, the efficiency of GT is still a challenging obstacle for many crops including tobacco. Recently, studies in several plant species indicated that by replacing SpCas9 with other CRISPR/Cas-based nucleases, GT efficiencies might be enhanced considerably. Therefore, we tested SaCas9 as well as a temperature-insensitive version of LbCas12a (ttLbCas12a) for targeting the tobacco SuRB gene. At the same time, we also optimized the protocol for Agrobacterium-mediated tobacco transformation and tissue culture. In this way, we could improve GT efficiencies to up to a third of the inoculated cotyledons when using ttLbCas12a, which outperformed SaCas9 considerably. In addition, we could show that the conversion tract length of the GT reaction can be up to 606 bp long and in the majority of cases, it is longer than 250 bp. We obtained multiple heritable GT events, mostly heterozygous, but also biallelic GT events and some without T-DNA integration. Thus, we were not only able to obtain CRISPR/Cas-based heritable GT events in allotetraploid Nicotiana tabacum for the first time, but our results also indicate that ttLbCas12a might be a superior alternative for gene editing and GT in tobacco as well as in other crops.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Nicotiana , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica , Marcación de Gen , Temperatura , Nicotiana/genética
16.
J Exp Bot ; 72(2): 177-183, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33258473

RESUMEN

The advent of powerful site-specific nucleases, particularly the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, which enables precise genome manipulation, has revolutionized plant breeding. Until recently, the main focus of researchers has been to simply knock-in or knock-out single genes, or to induce single base changes, but constant improvements of this technology have enabled more ambitious applications that aim to improve plant productivity or other desirable traits. One long-standing aim has been the induction of targeted chromosomal rearrangements (crossovers, inversions, or translocations). The feasibility of this technique has the potential to transform plant breeding, because natural rearrangements, like inversions, for example, typically present obstacles to the breeding process. In this way, genetic linkages between traits could be altered to combine or separate favorable and deleterious genes, respectively. In this review, we discuss recent breakthroughs in the field of chromosome engineering in plants and their potential applications in the field of plant breeding. In the future, these approaches might be applicable in shaping plant chromosomes in a directed manner, based on plant breeding needs.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ingeniería Genética , Genoma de Planta , Fitomejoramiento , Plantas/genética
17.
Transgenic Res ; 30(4): 529-549, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33646511

RESUMEN

In the last years, tremendous progress has been made in the development of CRISPR/Cas-mediated genome editing tools. A number of natural CRISPR/Cas nuclease variants have been characterized. Engineered Cas proteins have been developed to minimize PAM restrictions, off-side effects and temperature sensitivity. Both kinds of enzymes have, by now, been applied widely and efficiently in many plant species to generate either single or multiple mutations at the desired loci by multiplexing. In addition to DSB-induced mutagenesis, specifically designed CRISPR/Cas systems allow more precise gene editing, resulting not only in random mutations but also in predefined changes. Applications in plants include gene targeting by homologous recombination, base editing and, more recently, prime editing. We will evaluate these different technologies for their prospects and practical applicability in plants. In addition, we will discuss a novel application of the Cas9 nuclease in plants, enabling the induction of heritable chromosomal rearrangements, such as inversions and translocations. This technique will make it possible to change genetic linkages in a programmed way and add another level of genome engineering to the toolbox of plant breeding. Also, strategies for tissue culture free genome editing were developed, which might be helpful to overcome the transformation bottlenecks in many crops. All in all, the recent advances of CRISPR/Cas technology will help agriculture to address the challenges of the twenty-first century related to global warming, pollution and the resulting food shortage.


Asunto(s)
Sistemas CRISPR-Cas , Cromosomas de las Plantas/genética , Edición Génica , Técnicas Genéticas , Genoma de Planta , Plantas Modificadas Genéticamente/genética , Plantas/genética , Recombinación Homóloga
18.
PLoS Genet ; 14(9): e1007674, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30222730

RESUMEN

Topoisomerase 3α, a class I topoisomerase, consists of a TOPRIM domain, an active centre and a variable number of zinc-finger domains (ZFDs) at the C-terminus, in multicellular organisms. Whereas the functions of the TOPRIM domain and the active centre are known, the specific role of the ZFDs is still obscure. In contrast to mammals where a knockout of TOP3α leads to lethality, we found that CRISPR/Cas induced mutants in Arabidopsis are viable but show growth retardation and meiotic defects, which can be reversed by the expression of the complete protein. However, complementation with AtTOP3α missing either the TOPRIM-domain or carrying a mutation of the catalytic tyrosine of the active centre leads to embryo lethality. Surprisingly, this phenotype can be overcome by the simultaneous removal of the ZFDs from the protein. In combination with a mutation of the nuclease AtMUS81, the TOP3α knockout proved to be also embryo lethal. Here, expression of TOP3α without ZFDs, and in particular without the conserved ZFD T1, leads to only a partly complementation in root growth-in contrast to the complete protein, that restores root length to mus81-1 mutant level. Expressing the E. coli resolvase RusA in this background, which is able to process Holliday junction (HJ)-like recombination intermediates, we could rescue this root growth defect. Considering all these results, we conclude that the ZFD T1 is specifically required for targeting the topoisomerase activity to HJ like recombination intermediates to enable their processing. In the case of an inactivated enzyme, this leads to cell death due to the masking of these intermediates, hindering their resolution by MUS81.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Reparación del ADN/fisiología , ADN-Topoisomerasas de Tipo I/metabolismo , Endonucleasas/metabolismo , Dedos de Zinc/genética , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Dominio Catalítico/genética , ADN-Topoisomerasas de Tipo I/genética , ADN Cruciforme/genética , Endonucleasas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Resolvasas de Unión Holliday/genética , Resolvasas de Unión Holliday/metabolismo , Mutagénesis , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente
19.
Plant J ; 100(5): 1083-1094, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31381206

RESUMEN

The controlled change of plant genomes by homologous recombination (HR) is still difficult to achieve. We previously developed the in planta gene targeting (ipGT) technology which depends on the simultaneous activation of the target locus by a double-strand break and the excision of the target vector. Whereas the use of SpCas9 resulted in low ipGT frequencies in Arabidopsis, we were recently able to improve the efficiency by using egg cell-specific expression of the potent but less broadly applicable SaCas9 nuclease. In this study, we now tested whether we could improve ipGT further, by either performing it in cells with enhanced intrachromosomal HR efficiencies or by the use of Cas12a, a different kind of CRISPR/Cas nuclease with an alternative cutting mechanism. We could show before that plants possess three kinds of DNA ATPase complexes, which all lead to instabilities of homologous genomic repeats if lost by mutation. As these proteins act in independent pathways, we tested ipGT in double mutants in which intrachromosomal HR is enhanced 20-80-fold. However, we were not able to obtain higher ipGT frequencies, indicating that mechanisms for gene targeting (GT) and chromosomal repeat-induced HR differ. However, using LbCas12a, the GT frequencies were higher than with SaCas9, despite a lower non-homologous end-joining (NHEJ) induction efficiency, demonstrating the particular suitability of Cas12a to induce HR. As SaCas9 has substantial restrictions due to its longer GC rich PAM sequence, the use of LbCas12a with its AT-rich PAM broadens the range of ipGT drastically, particularly when targeting in CG-deserts like promoters and introns.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , ADN Helicasas/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Marcación de Gen/métodos , Proteínas de Arabidopsis/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Helicasas/genética , Recombinación Homóloga , Mutación
20.
Plant J ; 98(4): 577-589, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30900787

RESUMEN

During the evolution of plant genomes, sequence inversions occurred repeatedly making the respective regions inaccessible for meiotic recombination and thus for breeding. Therefore, it is important to develop technologies that allow the induction of inversions within chromosomes in a directed and efficient manner. Using the Cas9 nuclease from Staphylococcus aureus (SaCas9), we were able to obtain scarless heritable inversions with high efficiency in the model plant Arabidopsis thaliana. Via deep sequencing, we defined the patterns of junction formation in wild-type and in the non-homologous end-joining (NHEJ) mutant ku70-1. Surprisingly, in plants deficient of KU70, inversion induction is enhanced, indicating that KU70 is required for tethering the local broken ends together during repair. However, in contrast to wild-type, most junctions are formed by microhomology-mediated NHEJ and thus are imperfect with mainly deletions, making this approach unsuitable for practical applications. Using egg-cell-specific expression of Cas9, we were able to induce heritable inversions at different genomic loci and at intervals between 3 and 18 kb, in the percentage range, in the T1 generation. By screening individual lines, inversion frequencies of up to the 10% range were found in T2. Most of these inversions had scarless junctions and were without any sequence change within the inverted region, making the technology attractive for use in crop plants. Applying our approach, it should be possible to reverse natural inversions and induce artificial ones to break or fix linkages between traits at will.


Asunto(s)
Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Ingeniería Genética/métodos , Recombinación Homóloga , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA