Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Int Neuropsychol Soc ; 29(8): 763-774, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36524301

RESUMEN

OBJECTIVES: Abnormal tau, a hallmark Alzheimer's disease (AD) pathology, may appear in the locus coeruleus (LC) decades before AD symptom onset. Reports of subjective cognitive decline are also often present prior to formal diagnosis. Yet, the relationship between LC structural integrity and subjective cognitive decline has remained unexplored. Here, we aimed to explore these potential associations. METHODS: We examined 381 community-dwelling men (mean age = 67.58; SD = 2.62) in the Vietnam Era Twin Study of Aging who underwent LC-sensitive magnetic resonance imaging and completed the Everyday Cognition scale to measure subjective cognitive decline along with their selected informants. Mixed models examined the associations between rostral-middle and caudal LC integrity and subjective cognitive decline after adjusting for depressive symptoms, physical morbidities, and family. Models also adjusted for current objective cognitive performance and objective cognitive decline to explore attenuation. RESULTS: For participant ratings, lower rostral-middle LC contrast to noise ratio (LCCNR) was associated with significantly greater subjective decline in memory, executive function, and visuospatial abilities. For informant ratings, lower rostral-middle LCCNR was associated with significantly greater subjective decline in memory only. Associations remained after adjusting for current objective cognition and objective cognitive decline in respective domains. CONCLUSIONS: Lower rostral-middle LC integrity is associated with greater subjective cognitive decline. Although not explained by objective cognitive performance, such a relationship may explain increased AD risk in people with subjective cognitive decline as the LC is an important neural substrate important for higher order cognitive processing, attention, and arousal and one of the first sites of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Masculino , Humanos , Anciano , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Enfermedad de Alzheimer/diagnóstico , Cognición , Envejecimiento
2.
Cereb Cortex ; 32(19): 4191-4203, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-34969072

RESUMEN

The locus coeruleus (LC) is one of the earliest sites of tau pathology, making it a key structure in early Alzheimer's disease (AD) progression. As the primary source of norepinephrine for the brain, reduced LC integrity may have negative consequences for brain health, yet macrostructural brain measures (e.g. cortical thickness) may not be sensitive to early stages of neurodegeneration. We therefore examined whether LC integrity was associated with differences in cortical gray matter microstructure among 435 men (mean age = 67.5; range = 62-71.7). LC structural integrity was indexed by contrast-to-noise ratio (LCCNR) from a neuromelanin-sensitive MRI scan. Restriction spectrum imaging (RSI), an advanced multi-shell diffusion technique, was used to characterize cortical microstructure, modeling total diffusion in restricted, hindered, and free water compartments. Higher LCCNR (greater integrity) was associated with higher hindered and lower free water diffusion in multiple cortical regions. In contrast, no associations between LCCNR and cortical thickness survived correction. Results suggest lower LC integrity is associated with patterns of cortical microstructure that may reflect a reduction in cytoarchitectural barriers due to broader neurodegenerative processes. These findings highlight the potential utility for LC imaging and advanced diffusion measures of cortical microstructure in assessing brain health and early identification of neurodegenerative processes.


Asunto(s)
Sustancia Gris , Locus Coeruleus , Anciano , Sustancia Gris/diagnóstico por imagen , Humanos , Locus Coeruleus/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Norepinefrina , Agua
3.
Alzheimers Dement ; 17(6): 1017-1025, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33580733

RESUMEN

INTRODUCTION: The locus coeruleus (LC) undergoes extensive neurodegeneration in early Alzheimer's disease (AD). The LC is implicated in regulating the sleep-wake cycle, modulating cognitive function, and AD progression. METHODS: Participants were 481 men (ages 62 to 71.7) from the Vietnam Era Twin Study of Aging. LC structural integrity was indexed by neuromelanin-sensitive magnetic resonance imaging (MRI) contrast-to-noise ratio (LCCNR ). We examined LCCNR , cognition, amnestic mild cognitive impairment (aMCI), and daytime dysfunction. RESULTS: Heritability of LCCNR was .48. Participants with aMCI showed greater daytime dysfunction. Lower LCCNR was associated with poorer episodic memory, general verbal fluency, semantic fluency, and processing speed, as well as increased odds of aMCI and greater daytime dysfunction. DISCUSSION: Reduced LC integrity is associated with widespread differences across cognitive domains, daytime sleep-related dysfunction, and risk for aMCI. These findings in late-middle-aged adults highlight the potential of MRI-based measures of LC integrity in early identification of AD risk.


Asunto(s)
Cognición/fisiología , Disfunción Cognitiva/patología , Locus Coeruleus/patología , Anciano , Envejecimiento/fisiología , Disfunción Cognitiva/diagnóstico por imagen , Progresión de la Enfermedad , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos de la Memoria , Pruebas Neuropsicológicas/estadística & datos numéricos , Sueño
4.
Artículo en Inglés | MEDLINE | ID: mdl-39383177

RESUMEN

OBJECTIVES: Childhood disadvantage is associated with lower general cognitive ability (GCA) and brain structural differences in midlife and older adulthood. However, the neuroanatomical mechanisms underlying childhood disadvantage effects on later-life GCA remain poorly understood. Although total surface area (SA) has been linked to lifespan GCA differences, total SA does not capture the non-uniform nature of childhood disadvantage effects on neuroanatomy, which varies across unimodal and transmodal cortices. Here, we examined whether cortical SA profile-the extent to which the spatial patterning of SA deviates from the normative unimodal-transmodal cortical organization-is a mediator of childhood disadvantage effects on later-life GCA. METHOD: In 477 community-dwelling men aged 56-72 years old, childhood disadvantage index (CDI) was derived from four indicators of disadvantages and GCA was assessed using a standardized test. Cortical SA was obtained from structural magnetic resonance imaging. For cortical SA profile, we calculated the spatial similarity between maps of individual cortical SA and MRI-derived principal gradient (i.e., unimodal-transmodal organization). Mediation analyses were conducted to examine the indirect effects of CDI through cortical SA profile on GCA. RESULTS: Around 1.31% of CDI effects on later-life GCA were mediated by cortical SA profile, whereas total SA did not. Higher CDI was associated with more deviation of the cortical SA spatial patterning from the principal gradient, which in turn related to lower later-life GCA. DISCUSSION: Childhood disadvantage may contribute to later-life GCA differences partly by influencing the spatial patterning of cortical SA in a way that deviates from the normative cortical organizational principle.

5.
J Pain ; 25(6): 104463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38199594

RESUMEN

Chronic pain leads to tau accumulation and hippocampal atrophy in mice. In this study, we provide one of the first assessments in humans, examining the associations of probable chronic pain with hippocampal volume, integrity of the locus coeruleus (LC)-an upstream site of tau deposition-and Alzheimer's Disease-related plasma biomarkers. Participants were mostly cognitively unimpaired men. Probable chronic pain was defined as moderate-to-severe pain in 2+ study waves at average ages 56, 62, and 68. At age 68, 424 participants underwent structural magnestic resonance imaging (MRI) of hippocampal volume and LC-sensitive MRI providing an index of LC integrity (LC contrast-to-noise ratio). Analyses adjusted for confounders including major health conditions, depressive symptoms, and opioid use. Models showed that men with probable chronic pain had smaller hippocampal volume and lower rostral-middle-but not caudal-LC contrast-to-noise ratio compared to men without probable chronic pain. Men with probable chronic pain also had higher levels of plasma total tau, beta-amyloid-42, and beta-amyloid-40 compared to men without probable chronic pain. These findings suggest that probable chronic pain is associated with tau accumulation and reduced structural brain integrity in regions affected early in the development of Alzheimer's Disease. PERSPECTIVE: Probable chronic pain was associated with plasma biomarkers and brain regions that are affected early in Alzheimer's disease (AD). Reducing pain in midlife and elucidating biological mechanisms may help to reduce the risk of AD in older adults.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Dolor Crónico , Hipocampo , Imagen por Resonancia Magnética , Proteínas tau , Humanos , Masculino , Anciano , Dolor Crónico/sangre , Dolor Crónico/diagnóstico por imagen , Dolor Crónico/patología , Biomarcadores/sangre , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Persona de Mediana Edad , Proteínas tau/sangre , Péptidos beta-Amiloides/sangre , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Fragmentos de Péptidos/sangre , Encéfalo/diagnóstico por imagen , Encéfalo/patología
6.
Neurobiol Aging ; 141: 113-120, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852544

RESUMEN

We examined how brain reserve in midlife, measured by brain-predicted age difference scores (Brain-PADs), predicted executive function concurrently and longitudinally into early old age, and whether these associations were moderated by young adult cognitive reserve or APOE genotype. 508 men in the Vietnam Era Twin Study of Aging (VETSA) completed neuroimaging assessments at mean age 56 and six executive function tasks at mean ages 56, 62, and 68 years. Results indicated that greater brain reserve at age 56 was associated with better concurrent executive function (r=.10, p=.040) and less decline in executive function over 12 years (r=.34, p=.001). These associations were not moderated by cognitive reserve or APOE genotype. Twin analysis suggested associations with executive function slopes were driven by genetic influences. Our findings suggest that greater brain reserve allowed for better cognitive maintenance from middle- to old age, driven by a genetic association. The results are consistent with differential preservation of executive function based on brain reserve that is independent of young adult cognitive reserve or APOE genotype.


Asunto(s)
Envejecimiento , Apolipoproteínas E , Encéfalo , Reserva Cognitiva , Función Ejecutiva , Humanos , Función Ejecutiva/fisiología , Reserva Cognitiva/fisiología , Masculino , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Anciano , Envejecimiento/fisiología , Envejecimiento/genética , Envejecimiento/psicología , Apolipoproteínas E/genética , Genotipo , Estudios Longitudinales , Cognición/fisiología , Neuroimagen
7.
Artículo en Inglés | MEDLINE | ID: mdl-37096346

RESUMEN

BACKGROUND: Childhood disadvantage is a prominent risk factor for cognitive and brain aging. Childhood disadvantage is associated with poorer episodic memory in late midlife and functional and structural brain abnormalities in the default mode network (DMN). Although age-related changes in DMN are associated with episodic memory declines in older adults, it remains unclear if childhood disadvantage has an enduring impact on this later-life brain-cognition relationship earlier in the aging process. Here, within the DMN, we examined whether its cortical microstructural integrity-an early marker of structural vulnerability that increases the risk for future cognitive decline and neurodegeneration-is associated with episodic memory in adults at ages 56-66, and whether childhood disadvantage moderates this association. METHODS: Cortical mean diffusivity (MD) obtained from diffusion magnetic resonance imaging was used to measure microstructural integrity in 350 community-dwelling men. We examined both visual and verbal episodic memory in relation to DMN MD and divided participants into disadvantaged and nondisadvantaged groups based on parental education and occupation. RESULTS: Higher DMN MD was associated with poorer visual memory but not verbal memory (ß = -0.11, p = .040 vs ß = -0.04, p = .535). This association was moderated by childhood disadvantage and was significant only in the disadvantaged group (ß = -0.26, p = .002 vs ß = -0.00, p = .957). CONCLUSIONS: Lower DMN cortical microstructural integrity may reflect visual memory vulnerability in cognitively normal adults earlier in the aging process. Individuals who experienced childhood disadvantage manifested greater vulnerability to cortical microstructure-related visual memory dysfunction than their nondisadvantaged counterparts who exhibited resilience in the face of low cortical microstructural integrity.


Asunto(s)
Red en Modo Predeterminado , Memoria Episódica , Masculino , Humanos , Anciano , Niño , Imagen por Resonancia Magnética , Encéfalo , Envejecimiento/psicología
8.
Alzheimers Res Ther ; 16(1): 90, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664843

RESUMEN

BACKGROUND: Plasma neurofilament light chain (NfL) is a promising biomarker of neurodegeneration with potential clinical utility in monitoring the progression of neurodegenerative diseases. However, the cross-sectional associations of plasma NfL with measures of cognition and brain have been inconsistent in community-dwelling populations. METHODS: We examined these associations in a large community-dwelling sample of early old age men (N = 969, mean age = 67.57 years, range = 61-73 years), who are either cognitively unimpaired (CU) or with mild cognitive impairment (MCI). Specifically, we investigated five cognitive domains (executive function, episodic memory, verbal fluency, processing speed, visual-spatial ability), as well as neuroimaging measures of gray and white matter. RESULTS: After adjusting for age, health status, and young adult general cognitive ability, plasma NfL level was only significantly associated with processing speed and white matter hyperintensity (WMH) volume, but not with other cognitive or neuroimaging measures. The association with processing speed was driven by individuals with MCI, as it was not detected in CU individuals. CONCLUSIONS: These results suggest that in early old age men without dementia, plasma NfL does not appear to be sensitive to cross-sectional individual differences in most domains of cognition or neuroimaging measures of gray and white matter. The revealed plasma NfL associations were limited to WMH for all participants and processing speed only within the MCI cohort. Importantly, considering cognitive status in community-based samples will better inform the interpretation of the relationships of plasma NfL with cognition and brain and may help resolve mixed findings in the literature.


Asunto(s)
Biomarcadores , Cognición , Disfunción Cognitiva , Vida Independiente , Proteínas de Neurofilamentos , Neuroimagen , Pruebas Neuropsicológicas , Humanos , Masculino , Proteínas de Neurofilamentos/sangre , Anciano , Persona de Mediana Edad , Estudios Transversales , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico por imagen , Neuroimagen/métodos , Cognición/fisiología , Biomarcadores/sangre , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Envejecimiento/sangre
9.
Environ Health Perspect ; 132(7): 77006, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39028627

RESUMEN

BACKGROUND: Increased exposure to ambient air pollution, especially fine particulate matter ≤2.5µm (PM2.5) is associated with poorer brain health and increased risk for Alzheimer's disease (AD) and related dementias. The locus coeruleus (LC), located in the brainstem, is one of the earliest regions affected by tau pathology seen in AD. Its diffuse projections throughout the brain include afferents to olfactory areas that are hypothesized conduits of cerebral particle deposition. Additionally, extensive contact of the LC with the cerebrovascular system may present an additional route of exposure to environmental toxicants. OBJECTIVE: Our aim was to investigate if exposure to PM2.5 was associated with LC integrity in a nationwide sample of men in early old age, potentially representing one pathway through which air pollution can contribute to increased risk for AD dementia. METHODS: We examined the relationship between PM2.5 and in vivo magnetic resonance imaging (MRI) estimates of LC structural integrity indexed by contrast to noise ratio (LCCNR) in 381 men [mean age=67.3; standard deviation (SD)=2.6] from the Vietnam Era Twin Study of Aging (VETSA). Exposure to PM2.5 was taken as a 3-year average over the most recent period for which data were available (average of 5.6 years prior to the MRI scan). We focused on LCCNR in the rostral-middle portion of LC due to its stronger associations with aging and AD than the caudal LC. Associations between PM2.5 exposures and LC integrity were tested using linear mixed effects models adjusted for age, scanner, education, household income, and interval between exposure and MRI. A co-twin control analysis was also performed to investigate whether associations remained after controlling for genetic confounding and rearing environment. RESULTS: Multiple linear regressions revealed a significant association between PM2.5 and rostral-middle LCCNR (ß=-0.16; p=0.02), whereby higher exposure to PM2.5 was associated with lower LCCNR. A co-twin control analysis found that, within monozygotic pairs, individuals with higher PM2.5 exposure showed lower LCCNR (ß=-0.11; p=0.02), indicating associations were not driven by genetic or shared environmental confounds. There were no associations between PM2.5 and caudal LCCNR or hippocampal volume, suggesting a degree of specificity to the rostral-middle portion of the LC. DISCUSSION: Given previous findings that loss of LC integrity is associated with increased accumulation of AD-related amyloid and tau pathology, impacts on LC integrity may represent a potential pathway through which exposure to air pollution increases AD risk. https://doi.org/10.1289/EHP14344.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Locus Coeruleus , Imagen por Resonancia Magnética , Material Particulado , Humanos , Masculino , Anciano , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/efectos adversos , Envejecimiento , Persona de Mediana Edad , Enfermedad de Alzheimer
10.
J Gerontol A Biol Sci Med Sci ; 79(11)2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39169831

RESUMEN

BACKGROUND: Chronic pain leads to tau accumulation and hippocampal atrophy, which may be moderated through inflammation. In older men, we examined associations of chronic pain with Alzheimer's disease (AD)-related plasma biomarkers and hippocampal volume as moderated by systemic inflammation. METHODS: Participants were men without dementia. Chronic pain was defined as moderate-to-severe pain in 2+ study waves at average ages 56, 62, and 68. At age 68, we measured plasma amyloid-beta (Aß42, n = 871), Aß40 (n = 887), total tau (t-tau, n = 841), and neurofilament light chain (NfL, n = 915), and serum high-sensitivity C-reactive protein (hs-CRP, n = 968), a marker of systemic inflammation. A subgroup underwent structural MRI to measure hippocampal volume (n = 385). Analyses adjusted for medical morbidities, depressive symptoms, and opioid use. RESULTS: Chronic pain was related to higher Aß40 (ß = 0.25, p = .009), but hs-CRP was unrelated to AD-related biomarkers (ps > .05). There was a significant interaction such that older men with both chronic pain and higher levels of hs-CRP had higher levels of Aß42 (ß = 0.36, p = .001) and Aß40 (ß = 0.29, p = .003). Chronic pain and hs-CRP did not interact to predict levels of Aß42/Aß40, t-tau, or NfL. Furthermore, there were significant interactions such that Aß42 and Aß40 were associated with lower hippocampal volume, particularly when levels of hs-CRP were elevated (hs-CRP × Aß42: ß = -0.19, p = .002; hs-CRP × Aß40: ß = -0.21, p = .001), regardless of chronic pain status. CONCLUSIONS: Chronic pain was associated with higher plasma Aß, especially when hs-CRP was also elevated. Higher hs-CRP and Aß levels were both related to smaller hippocampal volumes. Chronic pain, when accompanied by systemic inflammation, may elevate the risk of neurodegeneration in AD-vulnerable regions.


Asunto(s)
Péptidos beta-Amiloides , Biomarcadores , Proteína C-Reactiva , Dolor Crónico , Hipocampo , Imagen por Resonancia Magnética , Proteínas tau , Humanos , Masculino , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Anciano , Péptidos beta-Amiloides/sangre , Dolor Crónico/sangre , Biomarcadores/sangre , Persona de Mediana Edad , Proteínas tau/sangre , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Proteínas de Neurofilamentos/sangre , Tamaño de los Órganos , Fragmentos de Péptidos/sangre , Inflamación/sangre
11.
Artículo en Inglés | MEDLINE | ID: mdl-38878863

RESUMEN

BACKGROUND: Early identification of Alzheimer's disease (AD) risk is critical for improving treatment success. Cortical thickness is a macrostructural measure used to assess neurodegeneration in AD. However, cortical microstructural changes appear to precede macrostructural atrophy and may improve early risk identification. Currently, whether cortical microstructural changes in aging are linked to vulnerability to AD pathophysiology remains unclear in nonclinical populations, who are precisely the target for early risk identification. METHODS: In 194 adults, we calculated magnetic resonance imaging-derived maps of changes in cortical mean diffusivity (microstructure) and cortical thickness (macrostructure) over 5 to 6 years (mean age: time 1 = 61.82 years; time 2 = 67.48 years). Episodic memory was assessed using 3 well-established tests. We obtained positron emission tomography-derived maps of AD pathology deposition (amyloid-ß, tau) and neurotransmitter receptors (cholinergic, glutamatergic) implicated in AD pathophysiology. Spatial correlational analyses were used to compare pattern similarity among maps. RESULTS: Spatial patterns of cortical macrostructural changes resembled patterns of cortical organization sensitive to age-related processes (r = -0.31, p < .05), whereas microstructural changes resembled the patterns of tau deposition in AD (r = 0.39, p = .038). Individuals with patterns of microstructural changes that more closely resembled stereotypical tau deposition exhibited greater memory decline (ß = 0.22, p = .029). Microstructural changes and AD pathology deposition were enriched in areas with greater densities of cholinergic and glutamatergic receptors (ps < .05). CONCLUSIONS: Patterns of cortical microstructural changes were more AD-like than patterns of macrostructural changes, which appeared to reflect more general aging processes. Microstructural changes may better inform early risk prediction efforts as a sensitive measure of vulnerability to pathological processes prior to overt atrophy and cognitive decline.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Corteza Cerebral , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/fisiopatología , Femenino , Masculino , Anciano , Persona de Mediana Edad , Envejecimiento/patología , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Imagen por Resonancia Magnética , Memoria Episódica
12.
Geroscience ; 45(2): 837-849, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36269506

RESUMEN

Executive function encompasses effortful cognitive processes that are particularly susceptible to aging. Functional brain networks supporting executive function-such as the frontoparietal control network and the multiple demand system-have been extensively investigated. However, it remains unclear how structural networks facilitate and constrain the dynamics of functional networks to contribute to aging-related executive function declines. We examined whether changes in structural network modal controllability-a network's ability to facilitate effortful brain state transitions that support cognitive functions-are associated with changes in executive function cross-sectionally and longitudinally. Diffusion-weighted imaging and neuropsychological testing were conducted at two time points (Time 1: ages 56 to 66, N = 172; Time 2: ages 61 to 70, N = 267) in community-dwelling men from the Vietnam Era Twin Study of Aging. An executive function factor score was computed from six neuropsychological tasks. Structural networks constructed from white matter connectivity were used to estimate modal controllability in control network and multiple demand system. We showed that higher modal controllability in control network and multiple demand system was associated with better executive function at Time 2, after controlling for age, young adult general cognitive ability, and physical health status. Moreover, changes in executive function over a period of 5 to 6 years (Time 1-Time 2, N = 105) were associated with changes in modal controllability of the multiple demand system and weakly in the control network over the same time period. These findings suggest that changes in the ability of structural brain networks in facilitating effortful brain state transitions may be a key neural mechanism underlying aging-related executive function declines and cognitive aging.


Asunto(s)
Función Ejecutiva , Imagen por Resonancia Magnética , Masculino , Humanos , Anciano , Encéfalo/diagnóstico por imagen , Envejecimiento/psicología , Cognición
13.
Neuroimage Clin ; 37: 103279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36493704

RESUMEN

BACKGROUND: Studies have investigated white matter microstructure in relation to late-life cognitive impairments, with fractional anisotropy (FA) and mean diffusivity (MD) measures thought to capture demyelination and axonal degradation. However, new post-processing methods allow isolation of free water (FW), which captures extracellular fluid contributions such as atrophy and neuroinflammation, from tissue components. FW also appears to be highly relevant to late-life cognitive impairment. Here, we evaluated whether executive functions are associated with FW, and FA and MD corrected for FW (FAFWcorr and MDFWcorr). METHOD: We examined 489 non-demented men in the Vietnam Era Twin Study of Aging (VETSA) at mean age 68. Two latent factors capturing 'common executive function' and 'working-memory specific' processes were estimated based on 6 tasks. Analyses focused on 11 cortical white matter tracts across three metrics: FW, FAFWcorr, and MDFWcorr. RESULTS: Better 'common executive function' was associated with lower FW across 9 of the 11 tracts. There were no significant associations with intracellular metrics after false discovery rate correction. Effects also appeared driven by individuals with MCI (13.7% of the sample). Working memory-specific tasks showed some associations with FAFWcorr, including the triangularis portion of the inferior frontal gyrus. There was no evidence that cognitive reserve (i.e., general cognitive ability assessed in early adulthood) moderated these associations between executive function and FW or FA. DISCUSSION: Executive function abilities in early old age are associated primarily with extracellular fluid (FW) as opposed to white matter (FAFWcorr or MDFWcorr). Moderation analyses suggested cognitive reserve does not play a strong role in these associations, at least in this sample of non-demented men.


Asunto(s)
Función Ejecutiva , Sustancia Blanca , Masculino , Humanos , Adulto , Anciano , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Memoria a Corto Plazo , Agua
14.
Front Aging Neurosci ; 14: 831002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493948

RESUMEN

Magnetic resonance imaging data are being used in statistical models to predicted brain ageing (PBA) and as biomarkers for neurodegenerative diseases such as Alzheimer's Disease. Despite their increasing application, the genetic and environmental etiology of global PBA indices is unknown. Likewise, the degree to which genetic influences in PBA are longitudinally stable and how PBA changes over time are also unknown. We analyzed data from 734 men from the Vietnam Era Twin Study of Aging with repeated MRI assessments between the ages 51-72 years. Biometrical genetic analyses "twin models" revealed significant and highly correlated estimates of additive genetic heritability ranging from 59 to 75%. Multivariate longitudinal modeling revealed that covariation between PBA at different timepoints could be explained by a single latent factor with 73% heritability. Our results suggest that genetic influences on PBA are detectable in midlife or earlier, are longitudinally very stable, and are largely explained by common genetic influences.

15.
Addiction ; 117(4): 1049-1059, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34605095

RESUMEN

BACKGROUND AND AIMS: Smoking is associated with increased risk for brain aging/atrophy and dementia. Few studies have examined early associations with brain aging. This study aimed to measure whether adult men with a history of heavier smoking in early mid-life would have older than predicted brain age 16-28 years later. DESIGN: Prospective cohort observational study, utilizing smoking pack years data from average age 40 (early mid-life) predicting predicted brain age difference scores (PBAD) at average ages 56, 62 (later mid-life) and 68 years (early old age). Early mid-life alcohol use was also evaluated. SETTING: Population-based United States sample. PARTICIPANTS/CASES: Participants were male twins of predominantly European ancestry who served in the United States military between 1965 and 1975. Structural magnetic resonance imaging (MRI) began at average age 56. Subsequent study waves included most baseline participants; attrition replacement subjects were added at later waves. MEASUREMENTS: Self-reported smoking information was used to calculate pack years smoked at ages 40, 56, 62, and 68. MRIs were processed with the Brain-Age Regression Analysis and Computation Utility software (BARACUS) program to create PBAD scores (chronological age-predicted brain age) acquired at average ages 56 (n = 493; 2002-08), 62 (n = 408; 2009-14) and 68 (n = 499; 2016-19). FINDINGS: In structural equation modeling, age 40 pack years predicted more advanced age 56 PBAD [ß = -0.144, P = 0.012, 95% confidence interval (CI) = -0.257, -0.032]. Age 40 pack years did not additionally predict PBAD at later ages. Age 40 alcohol consumption, but not a smoking × alcohol interaction, predicted more advanced PBAD at age 56 (ß = -0.166, P = 0.001, 95% CI = -0.261, -0.070) with additional influences at age 62 (ß = -0.115, P = 0.005, 95% CI = -0.195, -0.036). Age 40 alcohol did not predict age 68 PBAD. Within-twin-pair analyses suggested some genetic mechanism partially underlying effects of alcohol, but not smoking, on PBAD. CONCLUSIONS: Heavier smoking and alcohol consumption by age 40 appears to predict advanced brain aging by age 56 in men.


Asunto(s)
Fumar Cigarrillos , Adolescente , Adulto , Anciano , Envejecimiento , Encéfalo/diagnóstico por imagen , Fumar Cigarrillos/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Nicotiana , Adulto Joven
16.
Neurobiol Aging ; 108: 80-89, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34547718

RESUMEN

We examined the influence of lifestyle on brain aging after nearly 30 years, and tested the hypothesis that young adult general cognitive ability (GCA) would moderate these effects. In the community-dwelling Vietnam Era Twin Study of Aging (VETSA), 431 largely non-Hispanic white men completed a test of GCA at mean age 20. We created a modifiable lifestyle behavior composite from data collected at mean age 40. During VETSA, MRI-based measures at mean age 68 included predicted brain age difference (PBAD), Alzheimer's disease (AD) brain signature, and abnormal white matter scores. There were significant main effects of young adult GCA and lifestyle on PBAD and the AD signature (ps ≤ 0.012), and a GCA-by-lifestyle interaction on both (ps ≤ 0.006). Regardless of GCA level, having more favorable lifestyle behaviors predicted less advanced brain age and less AD-like brain aging. Unfavorable lifestyles predicted advanced brain aging in those with lower age 20 GCA, but did not affect brain aging in those with higher age 20 GCA. Targeting early lifestyle modification may promote dementia risk reduction, especially among lower reserve individuals.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Enfermedad de Alzheimer/prevención & control , Conducta/fisiología , Cognición/fisiología , Reserva Cognitiva/fisiología , Estilo de Vida Saludable/fisiología , Vida Independiente/psicología , Estilo de Vida , Adulto , Factores de Edad , Anciano , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/patología , Adulto Joven
17.
Brain Commun ; 3(3): fcab167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34396116

RESUMEN

Neuroimaging signatures based on composite scores of cortical thickness and hippocampal volume predict progression from mild cognitive impairment to Alzheimer's disease. However, little is known about the ability of these signatures among cognitively normal adults to predict progression to mild cognitive impairment. Towards that end, a signature sensitive to microstructural changes that may predate macrostructural atrophy should be useful. We hypothesized that: (i) a validated MRI-derived Alzheimer's disease signature based on cortical thickness and hippocampal volume in cognitively normal middle-aged adults would predict progression to mild cognitive impairment; and (ii) a novel grey matter mean diffusivity signature would be a better predictor than the thickness/volume signature. This cohort study was part of the Vietnam Era Twin Study of Aging. Concurrent analyses compared cognitively normal and mild cognitive impairment groups at each of three study waves (ns = 246-367). Predictive analyses included 169 cognitively normal men at baseline (age = 56.1, range = 51-60). Our previously published thickness/volume signature derived from independent data, a novel mean diffusivity signature using the same regions and weights as the thickness/volume signature, age, and an Alzheimer's disease polygenic risk score were used to predict incident mild cognitive impairment an average of 12 years after baseline (follow-up age = 67.2, range = 61-71). Additional analyses adjusted for predicted brain age difference scores (chronological age minus predicted brain age) to determine if signatures were Alzheimer-related and not simply ageing-related. In concurrent analyses, individuals with mild cognitive impairment had higher (worse) mean diffusivity signature scores than cognitively normal participants, but thickness/volume signature scores did not differ between groups. In predictive analyses, age and polygenic risk score yielded an area under the curve of 0.74 (sensitivity = 80.00%; specificity = 65.10%). Prediction was significantly improved with addition of the mean diffusivity signature (area under the curve = 0.83; sensitivity = 85.00%; specificity = 77.85%; P = 0.007), but not with addition of the thickness/volume signature. A model including both signatures did not improve prediction over a model with only the mean diffusivity signature. Results held up after adjusting for predicted brain age difference scores. The novel mean diffusivity signature was limited by being yoked to the thickness/volume signature weightings. An independently derived mean diffusivity signature may thus provide even stronger prediction. The young age of the sample at baseline is particularly notable. Given that the brain signatures were examined when participants were only in their 50 s, our results suggest a promising step towards improving very early identification of Alzheimer's disease risk and the potential value of mean diffusivity and/or multimodal brain signatures.

18.
Gerontol Geriatr Med ; 6: 2333721420925267, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32537479

RESUMEN

Objectives: First, we test for differences in various cognitive abilities across trajectories of body mass index (BMI) over the later life course. Second, we examine whether genetic risk factors for unhealthy BMIs-assessed via polygenic risk scores (PRS)-predict cognitive abilities in late-life. Methods: The study used a longitudinal sample of Vietnam veteran males to explore the associations between BMI trajectories, measured across four time points, and later cognitive abilities. The sample of 977 individuals was drawn from the Vietnam Era Twin Study of Aging. Cognitive abilities evaluated included executive function, abstract reasoning, episodic memory, processing speed, verbal fluency, and visual spatial ability. Multilevel linear regression models were used to estimate the associations between BMI trajectories and cognitive abilities. Then, BMI PRS was added to the models to evaluate polygenic associations with cognitive abilities. Results: There were no significant differences in cognitive ability between any of the BMI trajectory groups. There was a significant inverse relationship between BMI-PRS and several cognitive ability measures. Discussion: While no associations emerged for BMI trajectories and cognitive abilities at the phenotypic levels, BMI PRS measures did correlate with key cognitive domains. Our results suggest possible polygenic linkages cutting across key components of the central and peripheral nervous system.

19.
Quant Imaging Med Surg ; 5(2): 247-63, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25853083

RESUMEN

Diffusion tensor imaging (DTI) has provided considerable insight into our understanding of epilepsy as a network disorder, revealing subtle alterations in white matter microstructure both proximal and distal to the epileptic focus. These white matter changes have been shown to assist with lateralizing the seizure focus, as well as delineating the location/anatomy of key white matter tracts (i.e., optic radiations) for surgical planning. However, only recently have studies emerged describing the utility of DTI for probing cognitive networks in patients with epilepsy and for examining the structural plasticity within these networks both before and after epilepsy surgery. Here, we review the current literature describing the use of DTI for understanding language and memory networks in patients with temporal lobe epilepsy (TLE), as well as the extant literature on networks associated with executive functioning and global intelligence. Studies of memory and language reveal a complex network of frontotemporal fibers that contribute to naming and fluency performance in TLE, and demonstrate that these networks appear to undergo adaptive changes in response to surgical intervention. Although studies of executive functioning and global intelligence have been less conclusive, there is accumulating evidence that aberrant communication between frontoparietal and medial temporal networks may underlie working memory impairment in TLE. More recently, multimodal imaging studies have provided evidence that disruptions within these white matter networks co-localize with functional changes observed on functional MRI. However, structure-function associations are not entirely coherent and may breakdown in patients with TLE, especially those with a left-sided seizure focus. Although the reasons for discordant findings are unclear, small sample sizes, heterogeneity within patient populations and limitations of the current tensor model may account for contradictory and null findings. Improvements in imaging hardware and higher field strengths have now paved the way for the implementation of advanced diffusion techniques, and these advanced models show great promise for improving our understanding of how network dysfunction contributes to cognitive morbidity in TLE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA