Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 314, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794575

RESUMEN

Acute respiratory distress syndrome (ARDS), caused by noncardiogenic pulmonary edema (PE), contributes significantly to Coronavirus 2019 (COVID-19)-associated morbidity and mortality. We explored the effect of transmembrane osmotic pressure (OP) gradients in PE using a fluorescence resonance energy transfer-based Intermediate filament (IF) tension optical probe. Angiotensin-II- and bradykinin-induced increases in intracellular protein nanoparticle (PN)-OP were associated with inflammasome production and cytoskeletal depolymerization. Intracellular protein nanoparticle production also resulted in cytomembrane hyperpolarization and L-VGCC-induced calcium signals, which differed from diacylglycerol-induced calcium increment via TRPC6 activation. Both pathways involve voltage-dependent cation influx and OP upregulation via SUR1-TRPM4 channels. Meanwhile, intra/extracellular PN-induced OP gradients across membranes upregulated pulmonary endothelial and alveolar barrier permeability. Attenuation of intracellular PN, calcium signals, and cation influx by drug combinations effectively relieved intracellular OP and pulmonary endothelial nonselective permeability, and improved epithelial fluid absorption and PE. Thus, PN-OP is pivotal in pulmonary edema in ARDS and COVID-19, and transmembrane OP recovery could be used to treat pulmonary edema and develop new drug targets in pulmonary injury.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas , Edema Pulmonar , Síndrome de Dificultad Respiratoria , Calcio , Humanos , Presión Osmótica , Proteínas , Edema Pulmonar/complicaciones , Edema Pulmonar/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
2.
Front Pharmacol ; 15: 1361733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130645

RESUMEN

Introduction: Cytotoxic cerebral edema is a serious complication associated with cerebral ischemic stroke and is widely treated using the hypertonic dehydrant. Here, we propose, for the first time, the decrease of intracellular osmosis as a treatment strategy for alleviating cytotoxic cerebral edema. Methods: We established a fluorescence resonance energy transfer-based intermediate filament tension probe for the study and in situ evaluation of osmotic gradients, which were examined in real-time in living cells from primary cultures as well as cell lines. The MCAO rat model was used to confirm our therapy of cerebral edema. Results: Depolymerization of microfilaments/microtubules and the production of NLRP3 inflammasome resulted in an abundance of protein nanoparticles (PNs) in the glutamate-induced swelling of astrocytes. PNs induced changes in membrane potential and intracellular second messengers, thereby contributing to hyper-osmosis and the resultant astrocyte swelling via the activation of voltage-dependent nonselective ion channels. Therefore, multiple inhibitors of PNs, sodium and chloride ion channels were screened as compound combinations, based on a decrease in cell osmosis and astrocyte swelling, which was followed by further confirmation of the effectiveness of the compound combination against alleviated cerebral edema after ischemia. Discussion: The present study proposes new pathological mechanisms underlying "electrophysiology-biochemical signal-osmotic tension," which are responsible for cascade regulation in cerebral edema. It also explores various compound combinations as a potential treatment strategy for cerebral edema, which act by multi-targeting intracellular PNs and voltage-dependent nonselective ion flux to reduce astrocyte osmosis.

3.
Biomed Pharmacother ; 169: 115917, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38006617

RESUMEN

BACKGROUND: Glutamate stimuli and hyperactivation of its receptor are predominant determinants of ischemia-induced cytotoxic cerebral edema, which is closely associated with protein nanoparticle (PN)-induced increases in osmotic pressure. Herein, we investigated the electrochemical and mechanical mechanisms underlying the neuron swelling induced by PNs via the co-activation of N-methyl-D-aspartate receptor subunit (NMDAR) and excitatory metabotropic glutamate receptors (mGluRs). RESULTS: We observed that co-activation of ionic glutamate receptor NMDAR and Group I metabotropic mGluRs promoted alteration of PN-induced membrane potential and increased intracellular osmosis, which was closely associated with calcium and voltage-dependent ion channels. In addition, activation of NMDAR-induced calmodulin (CaM) and mGluR downstream diacylglycerol (DAG)/protein kinase C α (PKCα) were observed to play crucial roles in cytotoxic hyperosmosis. The crosstalk between CaM and PKCα could upregulate the sensitivity and sustained opening of sulfonylurea receptor 1 (SUR1)-transient receptor potential cation channel subfamily M member 4 (TRPM4) and transmembrane protein 16 A (TMEM16A) channels, respectively, maintaining the massive Na+/Cl- influx, and the resultant neuron hyperosmosis and swelling. Intracellular PNs and Na+/Cl- influx were found to be as potential targets for cerebral edema treatment, using the neurocyte osmosis system and a cerebral ischemic rat model. CONCLUSIONS: This study highlights PNs as a key factor in "electrochemistry-tension" signal transduction controlling Na+/Cl- ion channels and increased osmotic pressure in ischemia-induced cytotoxic edema. Moreover, enhanced sensitivity in both Na+ and Cl- ion channels also has a crucial role in cerebral edema.


Asunto(s)
Edema Encefálico , Nanopartículas , Receptores de Glutamato Metabotrópico , Canales Catiónicos TRPM , Ratas , Animales , Receptores de N-Metil-D-Aspartato/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Presión Osmótica , Proteína Quinasa C-alfa/metabolismo , Edema , Isquemia , Canales Catiónicos TRPM/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA