Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7983): 471-475, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758953

RESUMEN

Resonant oscillators with stable frequencies and large quality factors help us to keep track of time with high precision. Examples range from quartz crystal oscillators in wristwatches to atomic oscillators in atomic clocks, which are, at present, our most precise time measurement devices1. The search for more stable and convenient reference oscillators is continuing2-6. Nuclear oscillators are better than atomic oscillators because of their naturally higher quality factors and higher resilience against external perturbations7-9. One of the most promising cases is an ultra-narrow nuclear resonance transition in 45Sc between the ground state and the 12.4-keV isomeric state with a long lifetime of 0.47 s (ref. 10). The scientific potential of 45Sc was realized long ago, but applications require 45Sc resonant excitation, which in turn requires accelerator-driven, high-brightness X-ray sources11 that have become available only recently. Here we report on resonant X-ray excitation of the 45Sc isomeric state by irradiation of Sc-metal foil with 12.4-keV photon pulses from a state-of-the-art X-ray free-electron laser and subsequent detection of nuclear decay products. Simultaneously, the transition energy was determined as [Formula: see text] with an uncertainty that is two orders of magnitude smaller than the previously known values. These advancements enable the application of this isomer in extreme metrology, nuclear clock technology, ultra-high-precision spectroscopy and similar applications.

2.
Nature ; 590(7846): 401-404, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33597757

RESUMEN

Coherent control of quantum dynamics is key to a multitude of fundamental studies and applications1. In the visible or longer-wavelength domains, near-resonant light fields have become the primary tool with which to control electron dynamics2. Recently, coherent control in the extreme-ultraviolet range was demonstrated3, with a few-attosecond temporal resolution of the phase control. At hard-X-ray energies (above 5-10 kiloelectronvolts), Mössbauer nuclei feature narrow nuclear resonances due to their recoilless absorption and emission of light, and spectroscopy of these resonances is widely used to study the magnetic, structural and dynamical properties of matter4,5. It has been shown that the power and scope of Mössbauer spectroscopy can be greatly improved using various control techniques6-16. However, coherent control of atomic nuclei using suitably shaped near-resonant X-ray fields remains an open challenge. Here we demonstrate such control, and use the tunable phase between two X-ray pulses to switch the nuclear exciton dynamics between coherent enhanced excitation and coherent enhanced emission. We present a method of shaping single pulses delivered by state-of-the-art X-ray facilities into tunable double pulses, and demonstrate a temporal stability of the phase control on the few-zeptosecond timescale. Our results unlock coherent optical control for nuclei, and pave the way for nuclear Ramsey spectroscopy17 and spin-echo-like techniques, which should not only advance nuclear quantum optics18, but also help to realize X-ray clocks and frequency standards19. In the long term, we envision time-resolved studies of nuclear out-of-equilibrium dynamics, which is a long-standing challenge in Mössbauer science20.

3.
J Synchrotron Radiat ; 30(Pt 1): 11-23, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601922

RESUMEN

With the development of X-ray free-electron lasers (XFELs), producing pulses of femtosecond durations comparable with the coherence times of X-ray fluorescence, it has become possible to observe intensity-intensity correlations due to the interference of emission from independent atoms. This has been used to compare durations of X-ray pulses and to measure the size of a focusedX-ray beam, for example. Here it is shown that it is also possible to observe the interference of fluorescence photons through the measurement of the speckle contrast of angle-resolved fluorescence patterns. Speckle contrast is often used as a measure of the degree of coherence of the incident beam or the fluctuations of the illuminated sample as determined from X-ray diffraction patterns formed by elastic scattering, rather than from fluorescence patterns as addressed here. Commonly used approaches to estimate speckle contrast were found to suffer when applied to XFEL-generated fluorescence patterns due to low photon counts and a significant variation of the excitation pulse energy from shot to shot. A new method to reliably estimate speckle contrast under such conditions, using a weighting scheme, is introduced. The method is demonstrated by comparing the speckle contrast of fluorescence observed with pulses of 3 fs to 15 fs duration.

4.
Phys Rev Lett ; 130(17): 173201, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172237

RESUMEN

We demonstrate that x-ray fluorescence emission, which cannot maintain a stationary interference pattern, can be used to obtain images of structures by recording photon-photon correlations in the manner of the stellar intensity interferometry of Hanbury Brown and Twiss. This is achieved utilizing femtosecond-duration pulses of a hard x-ray free-electron laser to generate the emission in exposures comparable to the coherence time of the fluorescence. Iterative phasing of the photon correlation map generated a model-free real-space image of the structure of the emitters. Since fluorescence can dominate coherent scattering, this may enable imaging uncrystallised macromolecules.

6.
J Synchrotron Radiat ; 28(Pt 1): 120-124, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399560

RESUMEN

This work presents the improvements in the design and testing of polarimeters based on channel-cut crystals for nuclear resonant scattering experiments at the 14.4 keV resonance of 57Fe. By using four asymmetric reflections at asymmetry angles of α1 = -28°, α2 = 28°, α3 = -28° and α4 = 28°, the degree of polarization purity could be improved to 2.2 × 10-9. For users, an advanced polarimeter without beam offset is now available at beamline P01 of the storage ring PETRA III.

7.
Appl Opt ; 60(4): 912-917, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690397

RESUMEN

The 35-fs-long pulses of a commercial Ti:sapphire amplifier are compressed to ∼20fs via self-phase modulation in bulk glass substrates. The cascading of both nonlinear broadening and dispersion compensation stages makes use of the increasing peak power in the successive nonlinear stages. As an application example, the compressed pulses are used for electro-optical sampling of terahertz waves created by optically pumped thin-film spin emitters.

8.
Phys Rev Lett ; 122(12): 123608, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30978038

RESUMEN

By embedding a thin layer of tantalum in an x-ray cavity, we observe a change in the spectral characteristics of an inner-shell transition of the metal. The interaction between the cavity mode vacuum and the L_{III}-edge transition is enhanced, permitting the observation of the collective Lamb shift, superradiance, and a Fano-like cavity-resonance interference effect. This experiment demonstrates the feasibility of cavity quantum electrodynamics with electronic resonances in the x-ray range with applications to manipulating and probing the electronic structure of condensed matter with high-resolution x-ray spectroscopy in an x-ray cavity setting.

9.
Phys Rev Lett ; 123(15): 153902, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702302

RESUMEN

We introduce an analytical phase-reconstruction principle that retrieves atomic scale motion via time-domain interferometry. The approach is based on a resonant interaction with high-frequency light and does not require temporal resolution on the time scale of the resonance period. It is thus applicable to hard x rays and γ rays for measurements of extremely small spatial displacements or relative-frequency changes. Here, it is applied to retrieve the temporal phase of a 14.4 keV emission line of an ^{57}Fe sample, which corresponds to a spatial translation of this sample. The small wavelength of this transition (λ=0.86 Å) allows for determining the motion of the emitter on sub-Ångström length and nanosecond timescales.

10.
J Synchrotron Radiat ; 25(Pt 5): 1277-1290, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179167

RESUMEN

The PETRA IV project aims at upgrading the present synchrotron radiation source PETRA III at DESY into an ultralow-emittance source. Being diffraction limited up to X-rays of about 10 keV, PETRA IV will be ideal for three-dimensional X-ray microscopy of biological, chemical and physical processes under realistic conditions at length scales from atomic dimensions to millimetres and time scales down to the sub-nanosecond regime. In this way, it will enable groundbreaking studies in many fields of science and industry, such as health, energy, earth and environment, mobility and information technology. The science case is reviewed and the current state of the conceptual design is summarized, discussing a reference lattice, a hybrid multi-bend achromat with an interleaved sextupole configuration based on the ESRF-EBS design, in more detail as well as alternative lattice concepts.

11.
Nature ; 482(7384): 199-203, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22318603

RESUMEN

The manipulation of light-matter interactions by quantum control of atomic levels has had a profound impact on optical sciences. Such manipulation has many applications, including nonlinear optics at the few-photon level, slow light, lasing without inversion and optical quantum information processing. The critical underlying technique is electromagnetically induced transparency, in which quantum interference between transitions in multilevel atoms renders an opaque medium transparent near an atomic resonance. With the advent of high-brilliance, accelerator-driven light sources such as storage rings or X-ray lasers, it has become attractive to extend the techniques of optical quantum control to the X-ray regime. Here we demonstrate electromagnetically induced transparency in the regime of hard X-rays, using the 14.4-kiloelectronvolt nuclear resonance of the Mössbauer isotope iron-57 (a two-level system). We exploit cooperative emission from ensembles of the nuclei, which are embedded in a low-finesse cavity and excited by synchrotron radiation. The spatial modulation of the photonic density of states in a cavity mode leads to the coexistence of superradiant and subradiant states of nuclei, respectively located at an antinode and a node of the cavity field. This scheme causes the nuclei to behave as effective three-level systems, with two degenerate levels in the excited state (one of which can be considered metastable). The radiative coupling of the nuclear ensembles by the cavity field establishes the atomic coherence necessary for the cancellation of resonant absorption. Because this technique does not require atomic systems with a metastable level, electromagnetically induced transparency and its applications can be transferred to the regime of nuclear resonances, establishing the field of nuclear quantum optics.

12.
Phys Rev Lett ; 119(5): 053401, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949712

RESUMEN

Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission-often the predominant scattering mechanism-are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

13.
Phys Rev Lett ; 118(23): 237204, 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28644667

RESUMEN

Nuclear resonant x-ray diffraction in grazing incidence geometry is used to determine the lateral magnetic configuration in a one-dimensional lattice of ferromagnetic nanostripes. During magnetic reversal, strong nuclear superstructure diffraction peaks appear in addition to the electronic ones due to an antiferromagnetic order in the nanostripe lattice. We show that the analysis of the angular distribution together with the time dependence of the resonantly diffracted x rays reveals surface spin structures with very high sensitivity. This scattering technique provides unique access to laterally correlated spin configurations in magnetically ordered nanostructures and, in perspective, also to their dynamics.

14.
J Synchrotron Radiat ; 22(5): 1151-4, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26289265

RESUMEN

The spectrum of the undulator radiation of beamline P01 at Petra III has been measured after passing a multiple reflection channel-cut polarimeter. Odd and even harmonics up to the 15th order, as well as Compton peaks which were produced by the high harmonics in the spectrum, could been measured. These additional contributions can have a tremendous influence on the performance of the polarimeter and have to be taken into account for further polarimeter designs.

15.
Phys Rev Lett ; 114(14): 147601, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25910162

RESUMEN

We probe the spin dynamics in a thin magnetic film at ferromagnetic resonance by nuclear resonant scattering of synchrotron radiation at the 14.4 keV resonance of ^{57}Fe. The precession of the magnetization leads to an apparent reduction of the magnetic hyperfine field acting at the ^{57}Fe nuclei. The spin dynamics is described in a stochastic relaxation model adapted to the ferromagnetic resonance theory by Smit and Beljers to model the decay of the excited nuclear state. From the fits of the measured data, the shape of the precession cone of the spins is determined. Our results open a new perspective to determine magnetization dynamics in layered structures with very high depth resolution by employing ultrathin isotopic probe layers.

16.
Phys Rev Lett ; 114(20): 203601, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26047228

RESUMEN

Group velocity control is demonstrated for x-ray photons of 14.4 keV energy via a direct measurement of the temporal delay imposed on spectrally narrow x-ray pulses. Subluminal light propagation is achieved by inducing a steep positive linear dispersion in the optical response of 57Fe Mössbauer nuclei embedded in a thin film planar x-ray cavity. The direct detection of the temporal pulse delay is enabled by generating frequency-tunable spectrally narrow x-ray pulses from broadband pulsed synchrotron radiation. Our theoretical model is in good agreement with the experimental data.

17.
Phys Rev Lett ; 112(11): 117205, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702411

RESUMEN

A new type of spectroscopy for high-resolution studies of spin waves that relies on resonant scattering of hard x rays is introduced. The energy transfer in the scattering process is encoded in the precession of the polarization vector of the scattered photons. Thus, the energy resolution of such a spectroscopy is independent of the bandwidth of the probing radiation. The measured quantity resembles the intermediate scattering function of the magnetic excitations in the sample. At pulsed x-ray sources, especially x-ray lasers, the proposed technique allows us to take single-shot spectra of the magnetic dynamics. The method opens new avenues to study low-energy nonequilibrium magnetic processes in a pump-probe setup.

18.
Sci Adv ; 10(26): eadn9825, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924415

RESUMEN

Optical quantum memories are key elements in modern quantum technologies to reliably store and retrieve quantum information. At present, they are conceptually limited to the optical wavelength regime. Recent advancements in x-ray quantum optics render an extension of optical quantum memory protocols to ultrashort wavelengths possible, thereby establishing quantum photonics at x-ray energies. Here, we introduce an x-ray quantum memory protocol that utilizes mechanically driven nuclear resonant 57Fe absorbers to form a comb structure in the nuclear absorption spectrum by using the Doppler effect. This room-temperature nuclear frequency comb enables us to control the waveform of x-ray photon wave packets to a high level of accuracy and fidelity using solely mechanical motions. This tunable, robust, and highly flexible system offers a versatile platform for a compact solid-state quantum memory at room temperature for hard x-rays.

19.
Phys Rev Lett ; 111(7): 073601, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23992063

RESUMEN

The control of light-matter interaction at the quantum level usually requires coherent laser fields. But already an exchange of virtual photons with the electromagnetic vacuum field alone can lead to quantum coherences, which subsequently suppress spontaneous emission. We demonstrate such spontaneously generated coherences (SGC) in a large ensemble of nuclei operating in the x-ray regime, resonantly coupled to a common cavity environment. The observed SGC originates from two fundamentally different mechanisms related to cooperative emission and magnetically controlled anisotropy of the cavity vacuum. This approach opens new perspectives for quantum control, quantum state engineering and simulation of quantum many-body physics in an essentially decoherence-free setting.

20.
Langmuir ; 29(21): 6331-40, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23679799

RESUMEN

Cobalt sputter deposition on a nanostructured polystyrene-block-poly(ethylene oxide), P(S-b-EO), template is followed in real time with grazing incidence small-angle X-ray scattering (GISAXS). The polymer template consists of highly oriented parallel crystalline poly(ethylene oxide) (PEO) domains that are sandwiched between two polystyrene (PS) domains. In-situ GISAXS shows that cobalt atoms selectively decorate the PS domains of the microphase-separated polymer film and then aggregate to form surface metal nanopatterns. The polymer template is acting as a directing agent where cobalt metal nanowires are formed. At high metal load, the characteristic selectivity of the template is lost, and a uniform metal layer forms on the polymer surface. During the early stage of cobalt metal deposition, a highly asymmetric nanoparticles agglomeration is dominating structure formation. The cobalt nanoparticles mobility in combination with the high tendency of the nanoparticles to coalescence and to form immobile large-sized particles at the PS domains are discussed as mechanisms of structure formation.


Asunto(s)
Cobalto/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Dispersión del Ángulo Pequeño , Factores de Tiempo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA