Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cancer Prev ; 29(2): 32-44, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38957589

RESUMEN

Cancer drug resistance is associated with metabolic adaptation. Cancer cells have been shown to implicate acetylated polyamines in adaptations during cell death. However, exploring the mimetic of acetylated polyamines as a potential anticancer drug is lacking. We performed intracellular metabolite profiling of human breast cancer MCF-7 cells treated with doxorubicin (DOX), a well known anticancer drug. A novel and in-house vertical tube gel electrophoresis assisted procedure followed by LC-HRMS analysis was employed to detect acetylated polyamines such as N1-acetylspermidine. We designed a mimetic N1-acetylspermidine (MINAS) which is a known substrate of histone deacetylase 10 (HDAC10). Molecular docking and molecular dynamics (MDs) simulations were used to evaluate the inhibitory potential of MINAS against HDAC10. The inhibitory potential and the ADMET profile of MINAS were compared to a known HDAC10 inhibitor Tubastatin A. N1-acetylspermidine, an acetylated form of polyamine, was detected intracellularly in MCF-7 cells treated with DOX over DMSO-treated MCF-7 cells. We designed and curated MINAS (PubChem CID 162679241). Molecular docking and MD simulations suggested the strong and comparable inhibitory potential of MINAS (-8.2 kcal/mol) to Tubastatin A (-8.4 kcal/mol). MINAS and Tubastatin A share similar binding sites on HDAC10, including Ser138, Ser140, Tyr183, and Cys184. Additionally, MINAS has a better ADMET profile compared to Tubastatin A, with a high MRTD value and lower toxicity. In conclusion, the data show that N1-acetylspermidine levels rise during DOX-induced breast cancer cell death. Additionally, MINAS, an N1-acetylspermidine mimetic compound, could be investigated as a potential anticancer drug when combined with chemotherapy like DOX.

2.
Curr Mol Med ; 24(2): 264-279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36642883

RESUMEN

BACKGROUND: Dietary chemicals and their gut-metabolized products are explored for their anti-proliferative and pro-cell death effects. Dietary and metabolized chemicals are different from ruminants such as goats over humans. METHODS: Loss of cell viability and induction of death due to goat urine DMSO fraction (GUDF) derived chemicals were assessed by routine in vitro assays upon MCF-7 breast cancer cells. Intracellular metabolite profiling of MCF-7 cells treated with goat urine DMSO fraction (GUDF) was performed using an in-house designed vertical tube gel electrophoresis (VTGE) assisted methodology, followed by LC-HRMS. Next, identified intracellular dietary chemicals such as ellagic acid were evaluated for their inhibitory effects against transducers of the c-Raf signaling pathway employing molecular docking and molecular dynamics (MD) simulation. RESULTS: GUDF treatment upon MCF-7 cells displayed significant loss of cell viability and induction of cell death. A set of dietary and metabolized chemicals in the intracellular compartment of MCF-7 cells, such as ellagic acid, 2-hydroxymyristic acid, artelinic acid, 10-amino-decanoic acid, nervonic acid, 2,4-dimethyl-2-eicosenoic acid, 2,3,4'- Trihydroxy,4-Methoxybenzophenone and 9-amino-nonanoic acid were identified. Among intracellular dietary chemicals, ellagic acid displayed a strong inhibitory affinity (-8.7 kcal/mol) against c-Raf kinase. The inhibitory potential of ellagic acid was found to be significantly comparable with a known c-Raf kinase inhibitor sorafenib with overlapping inhibitory site residues (ARG450, GLU425, TRP423, VA403). CONCLUSION: Intracellular dietary-derived chemicals such as ellagic acid are suggested for the induction of cell death in MCF-7 cells. Ellagic acid is predicted as an inhibitor of c-Raf kinase and could be explored as an anti-cancer drug.


Asunto(s)
Antineoplásicos , Dimetilsulfóxido , Animales , Humanos , Ácido Elágico/farmacología , Ácido Elágico/química , Simulación del Acoplamiento Molecular , Cabras , Antineoplásicos/farmacología
3.
Asian Pac J Cancer Prev ; 25(2): 433-446, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38415528

RESUMEN

BACKGROUND: Cancer cells exhibit selective metabolic reprogramming to promote proliferation, invasiveness, and metastasis. Sphingolipids such as sphingosine and sphinganine have been reported to modulate cell death processes in cancer cells. However, the potential of extracellular sphinganine and its mimetic compounds as inducers of cancer cell death has not been thoroughly investigated. METHODS: We obtained extracellular conditioned medium from HCT-116 cells treated with the previously reported anticancer composition, goat urine DMSO fraction (GUDF). The extracellular metabolites were purified using a novel and in-house developed vertical tube gel electrophoresis (VTGE) technique and identified through LC-HRMS. Extracellular metabolites such as sphinganine, sphingosine, C16 sphinganine, and phytosphingosine were screened for their inhibitory role against intracellular kinases using molecular docking. Molecular dynamics (MD) simulations were performed to study the inhibitory potential of a novel designed modified mimetic sphinganine (MMS) (Pubchem CID: 162625115) upon c-Src kinase. Furthermore, inhibitory potential and ADME profile of MMS was compared with luteolin, a known c-Src kinase inhibitor. RESULTS: Data showed accumulation of sphinganine and other sphingolipids such as C16 sphinganine, phytosphingosine, and ceramide (d18:1/14:0) in the extracellular compartment of GUDF-treated HCT-116 cells. Molecular docking projected c-Src kinase as an inhibitory target of sphinganine. MD simulations projected MMS with strong (-7.1 kcal/mol) and specific (MET341, ASP404) binding to the inhibitory pocket of c-Src kinase. The projected MMS showed comparable inhibitory role and acceptable ADME profile over known inhibitors. CONCLUSION: In summary, our findings highlight the significance of extracellular sphinganine and other sphingolipids, including C16 sphinganine, phytosphingosine, and ceramide (d18:1/14:0), in the context of drug-induced cell death in HCT-116 cancer cells. Furthermore, we demonstrated the importance of extracellular sphinganine and its modified mimetic sphinganine (MMS) as a potential inhibitor of c-Src kinase. These findings suggest that MMS holds promise for future applications in targeted and combinatorial anticancer therapy.


Asunto(s)
Neoplasias , Esfingosina , Esfingosina/análogos & derivados , Humanos , Esfingosina/farmacología , Esfingosina/metabolismo , Proteína Tirosina Quinasa CSK , Simulación del Acoplamiento Molecular , Esfingolípidos/metabolismo , Ceramidas/farmacología , Neoplasias/patología
4.
Curr Protein Pept Sci ; 24(8): 684-699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37565551

RESUMEN

BACKGROUND: The oral cancer microenvironment plays an important role in the development and progression of the disease which depicts the heterogeneous nature of diseases. Several cellular and non-cellular factors, including dipeptides, have been reported to drive tumor progression and metastasis. Among various secreted molecules in the tumor microenvironment, prolylhydroxyproline (Pro-Hyp) is a collagen-degraded product with specific relevance to fibrosis and oral cancer. However, the detection of Pro-Hyp in the nails of oral cancer patients is a potential biomarker, and our understanding of the biological relevance of Pro-Hyp is highly limited. METHODS: Here, the authors have attempted to use a novel and in-house vertical tube gel electrophoresis (VTGE) protocol to evaluate the level of Pro-Hyp in the nails of oral cancer patients and healthy subjects. Furthermore, we employed molecular docking and molecular dynamics (MD) simulations to predict the biological function of Pro-Hyp. ADME profiles such as the druglikeness and leadlikeness of Pro-Hyp and a known PLC-ß2 activator, m-3M3FBS, were evaluated by the SWISS-ADME server. RESULTS: We report that among various key metabolites, Pro-Hyp, a dipeptide, is reduced in the nails of oral cancer patients. Molecular docking and MD simulations helped to suggest the potential role of Pro-Hyp as an activator of Phospholipase C-ß2 (PLC-ß2). Pro-Hyp displayed good binding affinity (-7.6 kcal/mol) with specific interactions by a conventional hydrogen bond with key residues, such as HIS311, HIS312, VAL641, and GLU743. MD simulations showed that the activator binding residues and stability of complexes are similar to the well-known activator m-3M3FBS of PLC-ß2. ADME profiles such as the druglikeness and leadlikeness of Pro-Hyp were found to be highly comparable and even better than those of m-3M3FBS. CONCLUSION: This study is one of the first reports on Pro-Hyp as a metabolite biomarker in the nails of oral cancer patients. Furthermore, the implications of Pro-Hyp are proposed to activate PLC-ß2 as a pro-tumor signaling cascade. In the future, diagnostic and therapeutic approaches may be explored as biomarkers and mimetic of Pro-Hyp.

5.
Biomedicines ; 11(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36979868

RESUMEN

OBJECTIVE: The objective of this study was to explore the biological relevance of free fatty acids derived from cow urine DMSO fraction (CUDF) by employing in vitro and in silico approaches. BACKGROUND: Metabolic heterogeneity at the intra- and intercellular levels contributes to the metabolic plasticity of cancer cells during drug-induced response. Free fatty acid (FFA) availability at intra- and intercellular levels is related to tumor heterogeneity at interpatient and xeno-heterogeneity levels. METHODS: We collected fresh urine from healthy cows and subjected it to fractionation in DMSO using drying, vortexing, and centrifugation. Finally, the sterile filtrate of cow urine DMSO fraction (CUDF) was evaluated for antiproliferative and proapoptotic effects in MCF-7 and ZR-75-1 breast cancer cells using routine cell-based assays. Intracellular metabolites were studied with the help of a novel in-house vertical tube gel electrophoresis (VTGE) method to reveal the nature of CUDF components in MCF-7 cells. Identified intracellular FFAs were studied for their molecular interactions with targeted receptor histone deacetylase (HDAC) using molecular docking and molecular dynamics (MD) simulations. RESULTS: CUDF showed a significant reduction in cell viability and cell death in MCF-7 and ZR-75-1 breast cancer cells. Interestingly, FFAs tetracosanedioic acid, 13Z-docosenoic acid (erucic acid), nervonic acid, 3-hydroxy-tetradecanoic acid, and 3-hydroxcapric acid were found inside the treated MCF-7 cancer cells. These FFAs, including tetracosanedioic acid, indicated a specific affinity to HDAC at their inhibitory sites, similar to trichostatin A, a known inhibitor. CONCLUSIONS: This study reports on FFAs derived from CUDF as potential antiproliferative and pro-cell death agents against breast cancer cells. MD simulations hinted at tetracosanedioic acid and other FFAs as inhibitors of HDAC that could explain the observed effects of FFAs in cancer cells.

6.
Protein Pept Lett ; 28(10): 1191-1202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34397320

RESUMEN

BACKGROUND: The need for agonists and antagonists of ß2 adrenoceptor (ß2AR) is warranted in various human disease conditions, including cancer, cardiovascular and other metabolic disorders. However, the sources of agonists of ß2AR are diverse in nature. Interestingly, there is a complete gap in the exploration of agonists of ß2AR from serum that is a well-known component of culture media that supports growth and proliferation of normal and cancer cells in vitro. METHODS: In this paper, we employed a novel vertical tube gel electrophoresis (VTGE)-assisted purification of intracellular metabolites of MCF-7 cells grown in vitro in complete media with fetal bovine serum (FBS). Intracellular metabolites of MCF-7 cells were then analyzed by LC-HRMS. Identified intracellular tripeptides of FBS origin were evaluated for their molecular interactions with various extracellular and intracellular receptors, including ß2AR (PDB ID: 2RH1) by employing molecular docking and molecular dynamics simulations (MDS). A known agonist of ß2AR, isoproterenol was used as a positive control in molecular docking and MDS analyses. RESULTS: We report here the identification of a few novel intracellular tripeptides, namely Arg-His- Trp, (PubChem CID-145453842), Pro-Ile-Glu, (PubChem CID-145457492), Cys-Gln-Gln, (PubChem CID-71471965), Glu-Glu-Lys, (PubChem CID-11441068) and Gly-Cys-Leu (PubChem CID-145455600) of FBS origin in MCF-7 cells. Molecular docking and MDS analyses revealed that among these molecules, the tripeptide Arg-His-Trp shows a favorable binding affinity with ß2AR (-9.8 Kcal/mol). The agonistic effect of Arg-His-Trp is significant and comparable with that of a known agonist of ß2AR, isoproterenol. CONCLUSION: In conclusion, we identified a unique Arg-His-Trp tripeptide of FBS origin in MCF-7 cells by employing a novel approach. This unique tripeptide Arg-His-Trp is suggested to be a potential agonist of ß2AR and it may have applications in the context of various human diseases like bronchial asthma and chronic obstructive pulmonary disease (COPD).


Asunto(s)
Extractos Celulares/química , Metabolómica/métodos , Fragmentos de Péptidos/química , Receptores Adrenérgicos/química , Albúmina Sérica Bovina/química , Secuencia de Aminoácidos , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fragmentos de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Receptores Adrenérgicos/metabolismo , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
7.
Artículo en Inglés | MEDLINE | ID: mdl-34769743

RESUMEN

Oncometabolites are known to drive metabolic adaptations in oral cancer. Several oncometabolites are known to be shared between cancer cells and non-cancer cells including microbiotas to modulate the tumor microenvironment. Among potential oncometabolites, succinylaminoimidazolecarboxamide ribose5'-phosphate (SAICAR) supports the growth and invasiveness of cancer cells by pyruvate kinase M2 (PKM2) enzyme in a glucose starved tumor microenvironment. There is a significant gap that shows the detection of SAICAR in biological samples including nails of oral cancer patients. Metabolite identification of SAICAR was investigated in the nails of oral cancer patients using novel vertical tube gel electrophoresis (VTGE) and LC-HRMS. Further molecular docking and molecular dynamics simulations (MDS) were employed to determine the nature of molecular interactions of SAICAR (CHEBI ID:18319) with PKM2 (PDB ID: 4G1N). Molecular docking of SAICAR (CHEBI ID:18319) was performed against pyruvate kinase M2 (PDB ID: 4G1N). Data suggest the presence of oncometabolite SAICAR in nails of oral cancer. Molecular docking of SAICAR with PKM2 showed appreciable binding affinity (-8.0 kcal/mol) with residues including ASP407, THR405, GLU410, ARG443, GLY321, ARG436, HIS439, LYS266, and TYR466. Furthermore, MDS confirmed the specific binding of SAICAR within the activator site of PKM2 and the stability of SAICAR and PKM2 molecular interactions. In conclusion, SAICAR is a promising oncometabolite biomarker present in the nails of oral cancer patients. A significant activation potential of SAICAR exists with the PKM2 enzyme.


Asunto(s)
Neoplasias de la Boca , Piruvato Quinasa , Humanos , Simulación del Acoplamiento Molecular , Uñas , Péptido Sintasas , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA