Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Calcif Tissue Int ; 108(2): 265-276, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33068139

RESUMEN

ALDH2 inactivating mutation (ALDH2*2) is the most abundant mutation leading to bone morphological aberration. Osteoporosis has long been associated with changes in bone biomaterial in elderly populations. Such changes can be exacerbated with elevated ethanol consumption and in subjects with impaired ethanol metabolism, such as carriers of aldehyde dehydrogenase 2 (ALDH2)-deficient gene, ALDH2*2. So far, little is known about bone compositional changes besides a decrease in mineralization. Raman spectroscopic imaging has been utilized to study the changes in overall composition of C57BL/6 female femur bone sections, as well as in compound spatial distribution. Raman maps of bone sections were analyzed using multilinear regression with these four isolated components, resulting in maps of their relative distribution. A 15-week treatment of both wild-type (WT) and ALDH2*2/*2 mice with 20% ethanol in the drinking water resulted in a significantly lower mineral content (p < 0.05) in the bones. There was no significant change in mineral and collagen content due to the mutation alone (p > 0.4). Highly localized islets of elongated adipose tissue were observed on most maps. Elevated fat content was found in ALDH2*2 knock-in mice consuming ethanol (p < 0.0001) and this effect appeared cumulative. This work conclusively demonstrates that that osteocytes in femurs of older female mice accumulate fat, as has been previously theorized, and that fat accumulation is likely modulated by levels of acetaldehyde, the ethanol metabolite.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Aldehído Deshidrogenasa Mitocondrial/genética , Hueso Cortical , Etanol , Fémur , Acetaldehído , Animales , Etanol/administración & dosificación , Femenino , Ratones , Ratones Endogámicos C57BL
2.
J Biol Chem ; 294(19): 7864-7877, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30914479

RESUMEN

4-Methylumbelliferone (4-MU) inhibits hyaluronan (HA) synthesis and is an approved drug used for managing biliary spasm. However, rapid and efficient glucuronidation is thought to limit its utility for systemically inhibiting HA synthesis. In particular, 4-MU in mice has a short half-life, causing most of the drug to be present as the metabolite 4-methylumbelliferyl glucuronide (4-MUG), which makes it remarkable that 4-MU is effective at all. We report here that 4-MUG contributes to HA synthesis inhibition. We observed that oral administration of 4-MUG to mice inhibits HA synthesis, promotes FoxP3+ regulatory T-cell expansion, and prevents autoimmune diabetes. Mice fed either 4-MUG or 4-MU had equivalent 4-MU:4-MUG ratios in serum, liver, and pancreas, indicating that 4-MU and 4-MUG reach an equilibrium in these tissues. LC-tandem MS experiments revealed that 4-MUG is hydrolyzed to 4-MU in serum, thereby greatly increasing the effective bioavailability of 4-MU. Moreover, using intravital 2-photon microscopy, we found that 4-MUG (a nonfluorescent molecule) undergoes conversion into 4-MU (a fluorescent molecule) and that 4-MU is extensively tissue bound in the liver, fat, muscle, and pancreas of treated mice. 4-MUG also suppressed HA synthesis independently of its conversion into 4-MU and without depletion of the HA precursor UDP-glucuronic acid (GlcUA). Together, these results indicate that 4-MUG both directly and indirectly inhibits HA synthesis and that the effective bioavailability of 4-MU is higher than previously thought. These findings greatly alter the experimental and therapeutic possibilities for HA synthesis inhibition.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ácido Hialurónico/biosíntesis , Himecromona/análogos & derivados , Linfocitos T Reguladores/metabolismo , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Himecromona/farmacología , Ratones , Linfocitos T Reguladores/patología
3.
Biol Chem ; 402(1): 113-121, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33544492

RESUMEN

We developed a new approach for combined analysis of calcium (Ca2+) handling and beating forces in contractile cardiomyocytes. We employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from dilated cardiomyopathy (DCM) patients carrying an inherited mutation in the sarcomeric protein troponin T (TnT), and isogenic TnT-KO iPSC-CMs generated via CRISPR/Cas9 gene editing. In these cells, Ca2+ handling as well as beating forces and -rates using single-cell atomic force microscopy (AFM) were assessed. We report impaired Ca2+ handling and reduced contractile force in DCM iPSC-CMs compared to healthy WT controls. TnT-KO iPSC-CMs display no contractile force or Ca2+ transients but generate Ca2+ sparks. We apply our analysis strategy to Ca2+ traces and AFM deflection recordings to reveal maximum rising rate, decay time, and duration of contraction with a multi-step background correction. Our method provides adaptive computing of signal peaks for different Ca2+ flux or force levels in iPSC-CMs, as well as analysis of Ca2+ sparks. Moreover, we report long-term measurements of contractile force dynamics on human iPSC-CMs. This approach enables deeper and more accurate profiling of disease-specific differences in cardiomyocyte contraction profiles using patient-derived iPSC-CMs.


Asunto(s)
Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Calcio/análisis , Humanos , Células Madre Pluripotentes Inducidas/patología , Microscopía de Fuerza Atómica , Miocitos Cardíacos/patología
4.
J Neurosci ; 38(50): 10672-10691, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30381406

RESUMEN

The immunopathological states of the brain induced by bacterial lipoproteins have been well characterized by using biochemical and histological assays. However, these studies have limitations in determining functional states of damaged brains involving aberrant synaptic activity and network, which makes it difficult to diagnose brain disorders during bacterial infection. To address this, we investigated the effect of Pam3CSK4 (PAM), a synthetic bacterial lipopeptide, on synaptic dysfunction of female mice brains and cultured neurons in parallel. Our functional brain imaging using PET with [18F]fluorodeoxyglucose and [18F] flumazenil revealed that the brain dysfunction induced by PAM is closely aligned to disruption of neurotransmitter-related neuronal activity and functional correlation in the region of the limbic system rather than to decrease of metabolic activity of neurons in the injection area. This finding was verified by in vivo tissue experiments that analyzed synaptic and dendritic alterations in the regions where PET imaging showed abnormal neuronal activity and network. Recording of synaptic activity also revealed that PAM reorganized synaptic distribution and decreased synaptic plasticity in hippocampus. Further study using in vitro neuron cultures demonstrated that PAM decreased the number of presynapses and the frequency of miniature EPSCs, which suggests PAM disrupts neuronal function by damaging presynapses exclusively. We also showed that PAM caused aggregation of synapses around dendrites, which may have caused no significant change in expression level of synaptic proteins, whereas synaptic number and function were impaired by PAM. Our findings could provide a useful guide for diagnosis and treatment of brain disorders specific to bacterial infection.SIGNIFICANCE STATEMENT It is challenging to diagnose brain disorders caused by bacterial infection because neural damage induced by bacterial products involves nonspecific neurological symptoms, which is rarely detected by laboratory tests with low spatiotemporal resolution. To better understand brain pathology, it is essential to detect functional abnormalities of brain over time. To this end, we investigated characteristic patterns of altered neuronal integrity and functional correlation between various regions in mice brains injected with bacterial lipopeptides using PET with a goal to apply new findings to diagnosis of brain disorder specific to bacterial infection. In addition, we analyzed altered synaptic density and function using both in vivo and in vitro experimental models to understand how bacterial lipopeptides impair brain function and network.


Asunto(s)
Encéfalo/diagnóstico por imagen , Lipopéptidos/toxicidad , Red Nerviosa/diagnóstico por imagen , Neuronas/patología , Animales , Encéfalo/efectos de los fármacos , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Tomografía de Emisión de Positrones/métodos , Ratas , Ratas Sprague-Dawley , Roedores
5.
Anal Chem ; 91(12): 7929-7934, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117414

RESUMEN

Improved methods are needed to reliably assess Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in vivo in light of recent therapeutic developments targeting the CFTR protein. Oral fluid from patients with cystic fibrosis (CF) and healthy controls (HCs) were studied using colorimetry and nonresonant Raman spectroscopy. Colorimetry experiments showed only a 36% decrease in thiocyanate (SCN-) concentration, but a sharp Raman peak at 2068 cm-1, attributable to (SCN-) vibrations, normalized to C-H peak, was on average 18 times higher for HC samples. Samples from patients undergoing treatment with CFTR modulators including ivacaftor, lumacaftor, and tezacaftor showed a high normalized peak in response to therapy. The peak intensity was consistent in longitudinal samples from single donors and in stored samples. The Raman peak ratio is a more sensitive, convenient, noninvasive biomarker for assessments of the therapeutic efficacy of drugs targeting CFTR and provides a value that is in much better agreement with theoretical expectations of saliva SCN- concentrations compared to colorimetry. This insight may greatly facilitate assessments of CFTR modulator efficacy in individual patients.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Saliva/metabolismo , Tiocianatos/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Espectrometría Raman
6.
Wound Repair Regen ; 26(3): 300-305, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-30152571

RESUMEN

Chronic wounds are a significant medical and economic problem worldwide. Individuals over the age of 65 are particularly vulnerable to pressure ulcers and impaired wound healing. With this demographic growing rapidly, there is a need for effective treatments. We have previously demonstrated that defective hypoxia signaling through destabilization of the master hypoxia-inducible factor 1α (HIF-1α) underlies impairments in both aging and diabetic wound healing. To stabilize HIF-1α, we developed a transdermal delivery system of the Food and Drug Administration-approved small molecule deferoxamine (DFO) and found that transdermal DFO could both prevent and treat ulcers in diabetic mice. Here, we demonstrate that transdermal DFO can similarly prevent pressure ulcers and normalize aged wound healing. Enhanced wound healing by DFO is brought about by stabilization of HIF-1α and improvements in neovascularization. Transdermal DFO can be rapidly translated into the clinic and may represent a new approach to prevent and treat pressure ulcers in aged patients.


Asunto(s)
Deferoxamina/farmacología , Úlcera por Presión/prevención & control , Sideróforos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Administración Cutánea , Animales , Deferoxamina/administración & dosificación , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Úlcera por Presión/fisiopatología , Sideróforos/administración & dosificación , Cicatrización de Heridas/fisiología
7.
Rapid Commun Mass Spectrom ; 32(6): 480-488, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29334584

RESUMEN

RATIONALE: A novel benzimidazole compound ZLN005 was previously identified as a transcriptional activator of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in certain metabolic tissues. Upregulation of PGC-1α by ZLN005 has been shown to have a beneficial effect in a diabetic mouse model and in a coronary artery disease model in vitro. ZLN005 could also have therapeutic potential in neurodegenerative diseases involving down-regulation of PGC-1α. Given the phenotypic efficacy of ZLN005 in several animal models of human disease, its metabolic profile was investigated to guide the development of novel therapeutics using ZLN005 as the lead compound. METHODS: ZLN005 was incubated with both rat and human liver microsomes and S9 fractions to identify in vitro metabolites. Urine from rats dosed with ZLN005 was used to identify in vivo metabolites. Extracted metabolites were analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) using a hybrid linear ion trap triple quadrupole mass spectrometer in full scan, enhanced product ion scan, neutral loss scan and precursor scan modes. Metabolites in plasma and brain of ZLN005-treated rats were also profiled using multiple reaction monitoring. RESULTS: Identified in vitro transformations of ZLN005 include mono- and dihydroxylation, further oxidation to carboxylic acids, and mono-O-glucuronide and sulfate conjugation to hydroxy ZLN005 as well as glutathione conjugation. Identified in vivo metabolites are mainly glucuronide and sulfate conjugates of dihydroxyl, carboxyl, and hydroxy acid of the parent compound. The parent compound as well as several major phase I metabolites were found in rat plasma and brain. CONCLUSIONS: Using both in vitro and in vivo methods, we elucidated the metabolic pathway of ZLN005. Phase I metabolites with hydroxylation and carboxylation, as well as phase II metabolites with glucuronide, sulfate and glutathione conjugation, were identified.

8.
Proc Natl Acad Sci U S A ; 112(1): 94-9, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25535360

RESUMEN

There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.


Asunto(s)
Deferoxamina/uso terapéutico , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus Experimental/tratamiento farmacológico , Presión/efectos adversos , Úlcera/tratamiento farmacológico , Administración Cutánea , Animales , Apoptosis/efectos de los fármacos , Deferoxamina/administración & dosificación , Deferoxamina/farmacología , Dermis/irrigación sanguínea , Dermis/efectos de los fármacos , Dermis/patología , Complicaciones de la Diabetes/patología , Diabetes Mellitus Experimental/patología , Sistemas de Liberación de Medicamentos , Ratones Endogámicos C57BL , Necrosis , Neovascularización Fisiológica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Úlcera/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/efectos de los fármacos
9.
Nanomedicine ; 13(3): 1157-1169, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27793788

RESUMEN

A solvent-free microsphere sintering technique was developed to fabricate scaffolds with pore size gradient for tissue engineering applications. Poly(D,L-Lactide) microspheres were fabricated through an emulsification method where TiO2 nanoparticles were employed both as particulate emulsifier in the preparation procedure and as surface modification agent to improve bioactivity of the scaffolds. A fine-tunable pore size gradient was achieved with a pore volume of 30±2.6%. SEM, EDX, XRD and FTIR analyses all confirmed the formation of bone-like apatite at the 14th day of immersion in Simulated Body Fluid (SBF) implying the ability of our scaffolds to bond to living bone tissue. In vitro examination of the scaffolds showed progressive activity of the osteoblasts on the scaffold with evidence of increase in its mineral content. The bioactive scaffold developed in this study has the potential to be used as a suitable biomaterial for bone tissue engineering and hard tissue regeneration.


Asunto(s)
Materiales Biocompatibles/química , Nanopartículas/química , Osteoblastos/citología , Poliésteres/química , Andamios del Tejido/química , Titanio/química , Animales , Apatitas/análisis , Apatitas/metabolismo , Línea Celular , Ratones , Microesferas , Osteoblastos/metabolismo , Porosidad , Propiedades de Superficie , Ingeniería de Tejidos/métodos
10.
Gastroenterology ; 149(1): 52-55.e2, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25863215

RESUMEN

Systemic therapies for inflammatory bowel disease are associated with an increased risk of infections and malignancies. Topical therapies reduce systemic exposure, but can be difficult to retain or have limited proximal distribution. To mitigate these issues, we developed a thermo-sensitive platform, using a polymer-based system that is liquid at room temperature but turns into a viscous gel on reaching body temperature. After rectal administration to mice with dextran sulfate sodium-induced colitis, the platform carrying budesonide or mesalamine becomes more viscoelastic near body temperature. Mice given the drug-containing platform gained more weight and had reduced histologic and biologic features of colitis than mice given the platform alone or liquid drugs via enema. Image analysis showed that enemas delivered with and without the platform reached similar distances in the colons of mice, but greater colonic retention was achieved by using the platform.


Asunto(s)
Administración Tópica , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Administración Rectal , Animales , Sulfato de Dextran/toxicidad , Femenino , Enfermedades Inflamatorias del Intestino/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos
11.
Adv Funct Mater ; 25(28): 4379-4389, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-27516731

RESUMEN

Biomaterials are extensively used to restore damaged tissues, in the forms of implants (e.g. tissue engineered scaffolds) or biomedical devices (e.g. pacemakers). Once in contact with the physiological environment, nanostructured biomaterials undergo modifications as a result of endogenous proteins binding to their surface. The formation of this macromolecular coating complex, known as 'protein corona', onto the surface of nanoparticles and its effect on cell-particle interactions are currently under intense investigation. In striking contrast, protein corona constructs within nanostructured porous tissue engineering scaffolds remain poorly characterized. As organismal systems are highly dynamic, it is conceivable that the formation of distinct protein corona on implanted scaffolds might itself modulate cell-extracellular matrix interactions. Here, we report that corona complexes formed onto the fibrils of engineered collagen scaffolds display specific, distinct, and reproducible compositions that are a signature of the tissue microenvironment as well as being indicative of the subject's health condition. Protein corona formed on collagen matrices modulated cellular secretome in a context-specific manner ex-vivo, demonstrating their role in regulating scaffold-cellular interactions. Together, these findings underscore the importance of custom-designing personalized nanostructured biomaterials, according to the biological milieu and disease state. We propose the use of protein corona as in situ biosensor of temporal and local biomarkers.

12.
Small ; 11(47): 6248-64, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26460851

RESUMEN

Improving patency rates of current cardiovascular implants remains a major challenge. It is widely accepted that regeneration of a healthy endothelium layer on biomaterials could yield the perfect blood-contacting surface. Earlier efforts in pre-seeding endothelial cells in vitro demonstrated success in enhancing patency, but translation to the clinic is largely hampered due to its impracticality. In situ endothelialization, which aims to create biomaterial surfaces capable of self-endothelializing upon implantation, appears to be an extremely promising solution, particularly with the utilization of endothelial progenitor cells (EPCs). Nevertheless, controlling cell behavior in situ using immobilized biomolecules or physical patterning can be complex, thus warranting careful consideration. This review aims to provide valuable insight into the rationale and recent developments in biomaterial strategies to enhance in situ endothelialization. In particular, a discussion on the important bio-/nanoengineering considerations and lessons learnt from clinical trials are presented to aid the future translation of this exciting paradigm.


Asunto(s)
Bioingeniería/métodos , Endotelio Vascular/fisiología , Investigación Biomédica Traslacional , Animales , Humanos
13.
Bioorg Med Chem ; 23(15): 4576-4582, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26164623

RESUMEN

OBJECTIVE: Using TCGA database, we had demonstrated that aberrantly activated Forkhead box M1 (FOXM1) correlates to worse overall survival in a subgroup of platinum resistant patients. Application of thiostrepton, a natural thiazole antibiotics that inhibits FOXM1 transcription activity in the clinic is hampered by difficulties in synthesis, degradation potential, and solubility. In this study, we aim to identify potential FOXM1 small molecule inhibitors to develop a new class of therapeutic agents to address the challenges in treating chemotherapy resistant EOC. METHODS: We used in silico screening of compounds against a solved structure of FOXM1 and subsequently to derive a list of possible compounds that could inhibit FOXM1. Three compounds were tested for in vitro cytotoxicity and FOXM1 expression level was confirmed by RT-PCR and Western blot in EOC cell lines. RESULTS: The FOXM1 structure obtained from 3G73 represented the DNA binding region of FOXM1 and possessed the winged helix fold representative of the Forkhead family of enzymes with two wings in direct contact with DNA. For ease of representation, we described both wings as a dimer and a single wing as a monomer. From this structure, we hypothesized two main models of how thiostrepton binding to FOXM1 could possibly curtail its transcriptional activity. In the first model thiostrepton could bind either of the wings or both wings and prevent association to DNA. In the second model thiostrepton bind the FOXM1/DNA complex and weaken association of FOXM1 to DNA. Subsequently, small molecular inhibitors could also use either of the models to inhibit transcription. To account for both models, the NCI diversity set was screened against the FOXM1 dimer:DNA complex (39 hits), dimer (11 hits) and monomer (14 hits). Those hits were further classified by chemical structure, biological function and chemical similarities to known molecules that target FOXM1. In cellular cytotoxicity assays, N-phenylphenanthren-9-amine (related to hit #225) successfully showed cytotoxicity to all three cell lines with IC50 around 1µM, and downregulate FOXM1 and transcription of its downstream molecules such as CCNB1. CONCLUSION: By a combination of in silico screening coupled to cellular cytotoxicity studies, we have taken the first step towards identifying potential inhibitors of FOXM1 that can replace thiostrepton.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/metabolismo , Carcinoma Epitelial de Ovario , Simulación por Computador , Femenino , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/antagonistas & inhibidores , Humanos , Unión Proteica
14.
Hum Mol Genet ; 21(6): 1384-90, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22156579

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia in the elderly. Accumulating evidence supports soluble amyloid-ß (Aß) oligomers as the leading candidate for the causative agent in AD and synapses as the primary site of Aß oligomer action. However, the molecular and cellular mechanisms by which Aß oligomers cause synaptic dysfunction and cognitive impairments remain poorly understood. Using primary cultures of rat hippocampal neurons as a model system, we show that the partitioning defective-1 (PAR-1)/microtubule affinity-regulating kinase (MARK) family kinases act as critical mediators of Aß toxicity on synapses and dendritic spines. Overexpression of MARK4 led to tau hyperphosphorylation, reduced expression of synaptic markers, and loss of dendritic spines and synapses, phenotypes also observed after Aß treatment. Importantly, expression of a non-phosphorylatable form of tau with the PAR-1/MARK site mutated blocked the synaptic toxicity induced by MARK4 overexpression or Aß treatment. To probe the involvement of endogenous MARK kinases in mediating the synaptic toxicity of Aß, we employed a peptide inhibitor capable of effectively and specifically inhibiting the activities of all PAR-1/MARK family members. This inhibitor abrogated the toxic effects of Aß oligomers on dendritic spines and synapses as assayed at the morphological and electrophysiological levels. Our results reveal a critical role for PAR-1/MARK kinases in AD pathogenesis and suggest PAR-1/MARK inhibitors as potential therapeutics for AD and possibly other tauopathies where aberrant tau hyperphosphorylation is involved.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/toxicidad , Espinas Dendríticas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/efectos de los fármacos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Electrofisiología , Técnica del Anticuerpo Fluorescente , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mutación/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Ratas , Sinapsis/metabolismo , Proteínas tau/genética
15.
Acta Paediatr ; 103(5): 474-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24417721

RESUMEN

UNLABELLED: Zinc protoporphyrin (ZnPP) is a promising metalloporphyrin with sufficient potency, but has poor solubility and is not absorbed well orally. Intragastric administration of ZnPP microparticles (30 µmol/kg) to 3-day-old mice resulted in a twofold increase in potency and no signs of phototoxicity. CONCLUSION: The use of polymeric particulate delivery systems can improve the stability and enhance intestinal absorption of ZnPP, while retaining HO inhibitory potency without photosensitising effects, and thus is potentially useful in treating neonatal hyperbilirubinemia.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Hiperbilirrubinemia Neonatal/tratamiento farmacológico , Luz/efectos adversos , Metaloporfirinas/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Protoporfirinas/uso terapéutico , Animales , Sistemas de Liberación de Medicamentos , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hiperbilirrubinemia Neonatal/prevención & control , Ratones
16.
Prog Mol Biol Transl Sci ; 207: 1-21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942533

RESUMEN

Repurposing pharmaceuticals is a technique used to find new, alternate clinical applications for approved drug molecules. It may include altering the drug formulation, route of administration, dose or the dosage regimen. The process of repurposing medicines starts with screening libraries of previously approved drugs for the targeted disease condition. If after an the initial in silico, in vitro or in vivo experimentation, the molecule has been found to be active against a particular target, the molecule is considered as a good candidate for clinical trials. As the safety profile of such molecules is available from the previous data, significant time and resources are saved. These advantages of drug repurposing approach make it especially helpful for finding treatments for rapidly evolving conditions including bacterial infections. An ever-increasing incidence of antimicrobial resistance, owing to the mutations in bacterial genome, leads to therapeutic failure of many approved antibiotics. Repurposing the approved drug molecules for use as antibiotics can provide an effective means for the combating life-threatening bacterial diseases. A number of drugs have been considered for drug repurposing against bacterial infections. These include, but are not limited to, Auranofin, Closantel, and Toremifene that have been repurposed for various infections. In addition, the reallocation of route of administration, redefining dosage regimen and reformulation of dosage forms have also been carried out for repurposing purpose. The current chapter addresses the drug discovery and development process with relevance to repurposing against bacterial infections.


Asunto(s)
Infecciones Bacterianas , Reposicionamiento de Medicamentos , Humanos , Infecciones Bacterianas/tratamiento farmacológico , Animales , Antibacterianos/uso terapéutico , Antibacterianos/farmacología
17.
Prog Mol Biol Transl Sci ; 205: 91-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38789189

RESUMEN

The drug discovery and development (DDD) process greatly relies on the data available in various forms to generate hypotheses for novel drug design. The complex and heterogeneous nature of biological data makes it difficult to utilize or gather meaningful information as such. Computational biology techniques have provided us with opportunities to better understand biological systems through refining and organizing large amounts of data into actionable and systematic purviews. The drug repurposing approach has been utilized to overcome the expansive time periods and costs associated with traditional drug development. It deals with discovering new uses of already approved drugs that have an established safety and efficacy profile, thereby, requiring them to go through fewer development phases. Thus, drug repurposing through computational biology provides a systematic approach to drug development and overcomes the constraints of traditional processes. The current chapter covers the basics, approaches and tools of computational biology that can be employed to effectively develop repurposing profile of already approved drug molecules.


Asunto(s)
Biología Computacional , Reposicionamiento de Medicamentos , Humanos , Biología Computacional/métodos , Descubrimiento de Drogas/métodos
18.
Biomaterials ; 311: 122680, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38959534

RESUMEN

In the present study, we explored the development of a novel noninvasive liposomal drug delivery material for use in intranasal drug delivery applications in human diseases. We used drug entrapment into liposomal nanoparticle assembly to efficiently deliver the drugs to the nasal mucosa to be delivered to the brain. The naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF) has previously been shown to have beneficial effects in ameliorating Parkinson's disease (PD). We used both naturally occurring 7,8-DHF and the chemically modified form of DHF, the DHF-ME, to be used as a drug candidate for the treatment of PD and l-DOPA induced dyskinesia (LID), which is the debilitating side effect of l-DOPA therapy in PD. The ligand-protein interaction behavior for 7,8-DHF and 6,7-DHF-ME was found to be more effective with molecular docking and molecular stimulation studies of flavonoid compounds with TrkB receptor. Our study showed that 7,8-DHF delivered via intranasal route using a liposomal formulation ameliorated LID in hemiparkinsonian mice model when these mice were chronically administered with l-DOPA, which is the only current medication for relieving the clinical symptoms of PD. The present study also demonstrated that apart from reducing the LID, 7,8-DHF delivery directly to the brain via the intranasal route also corrected some long-term signaling adaptations involving ΔFosB and α Synuclein in the brain of dopamine (DA) depleted animals.

19.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746193

RESUMEN

Innate immunity, the first line of defense against pathogens, relies on efficient elimination of invading agents by phagocytes. In the co-evolution of host and pathogen, pathogens developed mechanisms to dampen and evade phagocytic clearance. Here, we report that bacterial pathogens can evade clearance by macrophages through mimicry at the mammalian anti-phagocytic "don't eat me" signaling axis between CD47 (ligand) and SIRPα (receptor). We identified a protein, P66, on the surface of Borrelia burgdorferi that, like CD47, is necessary and sufficient to bind the macrophage receptor SIRPα. Expression of the gene encoding the protein is required for bacteria to bind SIRPα or a high-affinity CD47 reagent. Genetic deletion of p66 increases phagocytosis by macrophages. Blockade of P66 during infection promotes clearance of the bacteria. This study demonstrates that mimicry of the mammalian anti-phagocytic protein CD47 by B. burgdorferi inhibits macrophage-mediated bacterial clearance. Such a mechanism has broad implications for understanding of host-pathogen interactions and expands the function of the established innate immune checkpoint receptor SIRPα. Moreover, this report reveals P66 as a novel therapeutic target in the treatment of Lyme Disease.

20.
J Biol Chem ; 287(43): 36423-34, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22955287

RESUMEN

To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73-92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Parálisis/prevención & control , Cadena B de alfa-Cristalina/farmacología , Sustitución de Aminoácidos , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Ratones , Mutación Missense , Parálisis/genética , Parálisis/metabolismo , Parálisis/patología , Cadena B de alfa-Cristalina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA