Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Immunity ; 50(3): 567-575.e5, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30850342

RESUMEN

Long-term delivery of anti-HIV monoclonal antibodies (mAbs) using adeno-associated virus (AAV) vectors holds promise for the prevention and treatment of HIV infection. We describe a therapy trial in which four rhesus monkeys were infected with SHIV-AD8 for 86 weeks before receiving the AAV-encoded mAbs 3BNC117, 10-1074, and 10E8. Although anti-drug antibody (ADA) responses restricted mAb delivery, one monkey successfully maintained 50-150 µg/mL of 3BNC117 and 10-1074 for over 2 years. Delivery of these two mAbs to this monkey resulted in an abrupt decline in plasma viremia, which remained undetectable for 38 successive measurements over 3 years. We generated two more examples of virologic suppression using AAV delivery of a cocktail of four mAbs in a 12-monkey study. Our results provide proof of concept for AAV-delivered mAbs to produce a "functional cure." However, they also serve as a warning that ADAs may be a problem for practical application of this approach in humans.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Dependovirus/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Animales , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes/inmunología , Anticuerpos ampliamente neutralizantes , Línea Celular , Células HEK293 , Anticuerpos Anti-VIH/inmunología , Humanos , Macaca mulatta , Viremia/inmunología
2.
PLoS Pathog ; 18(2): e1009831, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130312

RESUMEN

During chronic human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection prior to AIDS progression, the vast majority of viral replication is concentrated within B cell follicles of secondary lymphoid tissues. We investigated whether infusion of T cells expressing an SIV-specific chimeric antigen receptor (CAR) and the follicular homing receptor, CXCR5, could successfully kill viral-RNA+ cells in targeted lymphoid follicles in SIV-infected rhesus macaques. In this study, CD4 and CD8 T cells from rhesus macaques were genetically modified to express antiviral CAR and CXCR5 moieties (generating CAR/CXCR5-T cells) and autologously infused into a chronically infected animal. At 2 days post-treatment, the CAR/CXCR5-T cells were located primarily in spleen and lymph nodes both inside and outside of lymphoid follicles. Few CAR/CXCR5-T cells were detected in the ileum, rectum, and lung, and no cells were detected in the bone marrow, liver, or brain. Within follicles, CAR/CXCR5-T cells were found in direct contact with SIV-viral RNA+ cells. We next infused CAR/CXCR5-T cells into ART-suppressed SIV-infected rhesus macaques, in which the animals were released from ART at the time of infusion. These CAR/CXCR5-T cells replicated in vivo within both the extrafollicular and follicular regions of lymph nodes and accumulated within lymphoid follicles. CAR/CXR5-T cell concentrations in follicles peaked during the first week post-infusion but declined to undetectable levels after 2 to 4 weeks. Overall, CAR/CXCR5-T cell-treated animals maintained lower viral loads and follicular viral RNA levels than untreated control animals, and no outstanding adverse reactions were noted. These findings indicate that CAR/CXCR5-T cell treatment is safe and holds promise as a future treatment for the durable remission of HIV.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Receptores CXCR5/inmunología , Receptores Quiméricos de Antígenos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos B/inmunología , Centro Germinal/inmunología , Humanos , Inmunoterapia , Ganglios Linfáticos/inmunología , Macaca mulatta , ARN Viral , Receptores CXCR5/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Carga Viral
3.
J Virol ; 96(2): e0158221, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34730398

RESUMEN

BG505 SOSIP.664 (hereafter referred to as SOSIP), a stabilized trimeric mimic of the HIV-1 envelope spike resembling the native viral spike, is a useful tool for isolating anti-HIV-1 neutralizing antibodies. We screened long-term SHIV-AD8 infected rhesus monkeys for potency and breadth of serum neutralizing activity against autologous and heterologous viruses: SHIV-AD8, HIV-1 YU2, HIV-1 JR-CSF, and HIV-1 NL4-3. Monkey rh2436 neutralized all viruses tested and showed strong reactivity to the SOSIP trimer, suggesting this was a promising candidate for attempts at monoclonal antibody (MAb) isolation. MAbs were isolated by performing single B-cell sorts from peripheral blood mononuclear cells (PBMC) by FACS using the SOSIP trimer as a probe. An initial round of sorted cells revealed the majority of isolated MAbs were directed to the gp41 external domain portion of the SOSIP trimer and were mostly non-neutralizing against tested isolates. A second sort was performed, introducing a gp41 blocking step prior to PBMC staining and FACS sorting. These isolated MAbs bound SOSIP trimer but were no longer directed to the gp41 external domain portion. A significantly higher proportion of MAbs with neutralizing activity were obtained with this strategy. Our data show this pre-blocking step with gp41 greatly increases the yield of non-gp41-reactive, SOSIP-specific MAbs and increases the likelihood of isolating MAbs with neutralizing activity. IMPORTANCE Recent advancements in the field have focused on the isolation and use of broadly neutralizing antibodies for both prophylaxis and therapy. Finding a useful probe to isolate broad potent neutralizing antibodies while avoiding non-neutralizing antibodies is important. The SOSIP trimer has been shown to be a great tool for this purpose because it binds known broadly neutralizing antibodies. However, the SOSIP trimer can isolate non-neutralizing antibodies as well, including gp41-specific MAbs. Introducing a pre-blocking step with gp41 recombinant protein decreased the percent of gp41-specific antibodies isolated with SOSIP probe, as well as increased the number of neutralizing antibodies isolated. This method can be used as a tool to increase the chances of isolating neutralizing antibodies.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Especificidad de Anticuerpos , Anticuerpos ampliamente neutralizantes/genética , Anticuerpos ampliamente neutralizantes/aislamiento & purificación , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/aislamiento & purificación , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Región Variable de Inmunoglobulina/genética , Macaca mulatta , Proteínas Recombinantes/inmunología
4.
J Virol ; 95(14): e0033021, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33910957

RESUMEN

A prophylactic vaccine that confers durable protection against human immunodeficiency virus (HIV) would provide a valuable tool to prevent new HIV/AIDS cases. As herpesviruses establish lifelong infections that remain largely subclinical, the use of persistent herpesvirus vectors to deliver HIV antigens may facilitate the induction of long-term anti-HIV immunity. We previously developed recombinant (r) forms of the gamma-herpesvirus rhesus monkey rhadinovirus (rRRV) expressing a replication-incompetent, near-full-length simian immunodeficiency virus (SIVnfl) genome. We recently showed that 8/16 rhesus macaques (RMs) vaccinated with a rDNA/rRRV-SIVnfl regimen were significantly protected against intrarectal (i.r.) challenge with SIVmac239. Here we investigated the longevity of this vaccine-mediated protection. Despite receiving no additional booster immunizations, the protected rDNA/rRRV-SIVnfl vaccinees maintained detectable cellular and humoral anti-SIV immune responses for more than 1.5 years after the rRRV boost. To assess if these responses were still protective, the rDNA/rRRV-SIVnfl vaccinees were subjected to a second round of marginal-dose i.r. SIVmac239 challenges, with eight SIV-naive RMs serving as concurrent controls. After three SIV exposures, 8/8 control animals became infected, compared to 3/8 vaccinees. This difference in SIV acquisition was statistically significant (P = 0.0035). The three vaccinated monkeys that became infected exhibited significantly lower viral loads than those in unvaccinated controls. Collectively, these data illustrate the ability of rDNA/rRRV-SIVnfl vaccination to provide long-term immunity against stringent mucosal challenges with SIVmac239. Future work is needed to identify the critical components of this vaccine-mediated protection and the extent to which it can tolerate sequence mismatches in the challenge virus. IMPORTANCE We report on the long-term follow-up of a group of rhesus macaques (RMs) that received an AIDS vaccine regimen and were subsequently protected against rectal acquisition of simian immunodeficiency virus (SIV) infection. The vaccination regimen employed included a live recombinant herpesvirus vector that establishes persistent infection in RMs. Consistent with the recurrent SIV antigen expression afforded by this herpesvirus vector, vaccinees maintained detectable SIV-specific immune responses for more than 1.5 years after the last vaccination. Importantly, these vaccinated RMs were significantly protected against a second round of rectal SIV exposures performed 1 year after the first SIV challenge phase. These results are relevant for HIV vaccine development because they show the potential of herpesvirus-based vectors to maintain functional antiretroviral immunity without the need for repeated boosting.


Asunto(s)
Vectores Genéticos , Rhadinovirus/genética , Vacunas contra el SIDAS/genética , Virus de la Inmunodeficiencia de los Simios/genética , Animales , Anticuerpos Antivirales/inmunología , Femenino , Estudios de Seguimiento , Inmunogenicidad Vacunal , Memoria Inmunológica , Macaca mulatta , Masculino , Rhadinovirus/inmunología , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T/inmunología , Factores de Tiempo
5.
PLoS Pathog ; 16(8): e1008753, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32866207

RESUMEN

The induction of broad and potent immunity by vaccines is the key focus of research efforts aimed at protecting against HIV-1 infection. Soluble native-like HIV-1 envelope glycoproteins have shown promise as vaccine candidates as they can induce potent autologous neutralizing responses in rabbits and non-human primates. In this study, monoclonal antibodies were isolated and characterized from rhesus macaques immunized with the BG505 SOSIP.664 trimer to better understand vaccine-induced antibody responses. Our studies reveal a diverse landscape of antibodies recognizing immunodominant strain-specific epitopes and non-neutralizing neo-epitopes. Additionally, we isolated a subset of mAbs against an epitope cluster at the gp120-gp41 interface that recognize the highly conserved fusion peptide and the glycan at position 88 and have characteristics akin to several human-derived broadly neutralizing antibodies.


Asunto(s)
Vacunas contra el SIDA/inmunología , Mapeo Epitopo , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Vacunas contra el SIDA/genética , Animales , Anticuerpos Monoclonales de Origen Murino/inmunología , Epítopos/genética , Anticuerpos Anti-VIH/genética , Proteína gp41 de Envoltorio del VIH/genética , VIH-1/genética , Macaca mulatta , Multimerización de Proteína/genética , Multimerización de Proteína/inmunología
6.
Proc Natl Acad Sci U S A ; 116(5): 1739-1744, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30642966

RESUMEN

The biological characteristics of HIV pose serious difficulties for the success of a preventive vaccine. Molecularly cloned SIVmac239 is difficult for antibodies to neutralize, and a variety of vaccine approaches have had great difficulty achieving protective immunity against it in rhesus monkey models. Here we report significant protection against i.v. acquisition of SIVmac239 using a long-lasting approach to vaccination. The vaccine regimen includes a replication-competent herpesvirus engineered to contain a near-full-length SIV genome that expresses all nine SIV gene products, assembles noninfectious SIV virion particles, and is capable of eliciting long-lasting effector-memory cellular immune responses to all nine SIV gene products. Vaccinated monkeys were significantly protected against acquisition of SIVmac239 following repeated marginal dose i.v. challenges over a 4-month period. Further work is needed to define the critical components necessary for eliciting this protective immunity, evaluate the breadth of the protection against a variety of strains, and explore how this approach may be extended to human use.


Asunto(s)
Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Células Cultivadas , Herpesviridae/inmunología , Macaca mulatta , Vacunación/métodos , Virión/inmunología , Replicación Viral/inmunología
7.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31645449

RESUMEN

A replication-competent, recombinant strain of rhesus monkey rhadinovirus (RRV) expressing the Gag protein of SIVmac239 was constructed in the context of a glycoprotein L (gL) deletion mutation. Deletion of gL detargets the virus from Eph family receptors. The ability of this gL-minus Gag recombinant RRV to infect, persist, and elicit immune responses was evaluated after intravenous inoculation of two Mamu-A*01+ RRV-naive rhesus monkeys. Both monkeys responded with an anti-RRV antibody response, and quantitation of RRV DNA in peripheral blood mononuclear cells (PBMC) by real-time PCR revealed levels similar to those in monkeys infected with recombinant gL+ RRV. Comparison of RRV DNA levels in sorted CD3+ versus CD20+ versus CD14+ PBMC subpopulations indicated infection of the CD20+ subpopulation by the gL-minus RRV. This contrasts with results obtained with transformed B cell lines in vitro, in which deletion of gL resulted in markedly reduced infectivity. Over a period of 20 weeks, Gag-specific CD8+ T cell responses were documented by major histocompatibility complex class I (MHC-I) tetramer staining. Vaccine-induced CD8+ T cell responses, which were predominantly directed against the Mamu-A*01-restricted Gag181-189CM9 epitope, could be inhibited by blockade of MHC-I presentation. Our results indicate that gL and the interaction with Eph family receptors are dispensable for the colonization of the B cell compartment following high-dose infection by the intravenous route, which suggests the existence of alternative receptors. Further, gL-minus RRV elicits cellular immune responses that are predominantly canonical in nature.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with a substantial disease burden in sub-Saharan Africa, often in the context of human immunodeficiency virus (HIV) infection. The related rhesus monkey rhadinovirus (RRV) has shown potential as a vector to immunize monkeys with antigens from simian immunodeficiency virus (SIV), the macaque model for HIV. KSHV and RRV engage cellular receptors from the Eph family via the viral gH/gL glycoprotein complex. We have now generated a recombinant RRV that expresses the SIV Gag antigen and does not express gL. This recombinant RRV was infectious by the intravenous route, established persistent infection in the B cell compartment, and elicited strong immune responses to the SIV Gag antigen. These results argue against a role for gL and Eph family receptors in B cell infection by RRV in vivo and have implications for the development of a live-attenuated KSHV vaccine or vaccine vector.


Asunto(s)
Eliminación de Gen , Productos del Gen gag , Vectores Genéticos , Infecciones por Herpesviridae , Rhadinovirus , Vacunas contra el SIDAS , Virus de la Inmunodeficiencia de los Simios , Animales , Antígenos CD/inmunología , Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Productos del Gen gag/genética , Productos del Gen gag/inmunología , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/inmunología , Humanos , Macaca mulatta , Rhadinovirus/genética , Rhadinovirus/inmunología , Vacunas contra el SIDAS/genética , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
8.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33028714

RESUMEN

Given the complex biology of human immunodeficiency virus (HIV) and its remarkable capacity to evade host immune responses, HIV vaccine efficacy may benefit from the induction of both humoral and cellular immune responses of maximal breadth, potency, and longevity. Guided by this rationale, we set out to develop an immunization protocol aimed at maximizing the induction of anti-Envelope (anti-Env) antibodies and CD8+ T cells targeting non-Env epitopes in rhesus macaques (RMs). Our approach was to deliver the entire simian immunodeficiency virus (SIV) proteome by serial vaccinations. To that end, 12 RMs were vaccinated over 81 weeks with DNA, modified vaccinia Ankara (MVA), vesicular stomatitis virus (VSV), adenovirus type 5 (Ad5), rhesus monkey rhadinovirus (RRV), and DNA again. Both the RRV and the final DNA boosters delivered a near-full-length SIVmac239 genome capable of assembling noninfectious SIV particles and inducing T-cell responses against all nine SIV proteins. Compared to previous SIV vaccine trials, the present DNA-MVA-VSV-Ad5-RRV-DNA regimen resulted in comparable levels of Env-binding antibodies and SIV-specific CD8+ T-cells. Interestingly, one vaccinee developed low titers of neutralizing antibodies (NAbs) against SIVmac239, a tier 3 virus. Following repeated intrarectal marginal-dose challenges with SIVmac239, vaccinees were not protected from SIV acquisition but manifested partial control of viremia. Strikingly, the animal with the low-titer vaccine-induced anti-SIVmac239 NAb response acquired infection after the first SIVmac239 exposure. Collectively, these results highlight the difficulties in eliciting protective immunity against immunodeficiency virus infection.IMPORTANCE Our results are relevant to HIV vaccine development efforts because they suggest that increasing the number of booster immunizations or delivering additional viral antigens may not necessarily improve vaccine efficacy against immunodeficiency virus infection.


Asunto(s)
Inmunidad , Proteoma , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/inmunología , Antígenos Virales , Linfocitos T CD8-positivos/inmunología , Humanos , Inmunización Secundaria , Macaca mulatta/inmunología , Vacunación , Carga Viral , Viremia
9.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31801867

RESUMEN

By the end of the 2016 Zika virus (ZIKV) outbreak, it is estimated that there were up to 100 million infections in the Americas. In approximately one in seven infants born to mothers infected during pregnancy, ZIKV has been linked to microcephaly, developmental delays, or other congenital disorders collectively known as congenital Zika syndrome, as well as Guillain-Barré syndrome, in ZIKV-infected adults. It is a global health priority to develop a vaccine against ZIKV that elicits long-lasting immunity; however, the durability of immunity to ZIKV is unknown. Previous studies in mice and nonhuman primates have been crucial in vaccine development but have not defined the duration of immunity generated by ZIKV infection. In this study, we rechallenged five rhesus macaques with ZIKV 22 to 28 months after a primary ZIKV infection. We show that primary ZIKV infection generates high titers of neutralizing antibodies that protect from detectable plasma viremia following rechallenge and persist for at least 22 to 28 months. While additional longitudinal studies are necessary with longer time frames, this study establishes a new experimentally defined minimal length of protective ZIKV immunity.IMPORTANCE ZIKV emerged as a vector-borne pathogen capable of causing illness in infected adults and congenital birth defects in infants born to mothers infected during pregnancy. Despite the decrease in ZIKV cases since the 2015-2016 epidemic, questions concerning the prevalence and longevity of protective immunity have left vulnerable communities fearful that they may become the center of next ZIKV outbreak. Although preexisting herd immunity in regions of past outbreaks may dampen the potential for future outbreaks to occur, we currently do not know the longevity of protective immunity to ZIKV after a person becomes infected. Here, we establish a new experimentally defined minimal length of protective ZIKV immunity. We show that five rhesus macaques initially infected with ZIKV 22 to 28 months prior to rechallenge elicit a durable immune response that protected from detectable plasma viremia. This study establishes a new minimal length of protective immunity.


Asunto(s)
Inmunidad/inmunología , Macaca mulatta/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Brotes de Enfermedades/prevención & control , Viremia , Infección por el Virus Zika/epidemiología
10.
PLoS Pathog ; 15(3): e1007311, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30897187

RESUMEN

CD8+ T cells play an important role in controlling of HIV and SIV infections. However, these cells are largely excluded from B cell follicles where HIV and SIV producing cells concentrate during chronic infection. It is not known, however, if antigen-specific CD8+ T cells are excluded gradually as pathogenesis progresses from early to chronic phase, or this phenomenon occurs from the beginning infection. In this study we determined that SIV-specific CD8+ T cells were largely excluded from follicles during early infection, we also found that within follicles, they were entirely absent in 60% of the germinal centers (GCs) examined. Furthermore, levels of SIV-specific CD8+ T cells in follicular but not extrafollicular areas significantly correlated inversely with levels of viral RNA+ cells. In addition, subsets of follicular SIV-specific CD8+ T cells were activated and proliferating and expressed the cytolytic protein perforin. These studies suggest that a paucity of SIV-specific CD8+ T cells in follicles and complete absence within GCs during early infection may set the stage for the establishment of persistent chronic infection.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Centro Germinal/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Enfermedad Aguda , Animales , Linfocitos B/fisiología , Linfocitos T CD8-positivos/metabolismo , Centro Germinal/inmunología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/fisiopatología , Virus de la Inmunodeficiencia de los Simios/inmunología , Carga Viral/inmunología , Replicación Viral
11.
PLoS Pathog ; 15(9): e1008015, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31568531

RESUMEN

A prophylactic vaccine against human immunodeficiency virus (HIV) remains a top priority in biomedical research. Given the failure of conventional immunization protocols to confer robust protection against HIV, new and unconventional approaches may be needed to generate protective anti-HIV immunity. Here we vaccinated rhesus macaques (RMs) with a recombinant (r)DNA prime (without any exogenous adjuvant), followed by a booster with rhesus monkey rhadinovirus (RRV)-a herpesvirus that establishes persistent infection in RMs (Group 1). Both the rDNA and rRRV vectors encoded a near-full-length simian immunodeficiency virus (SIVnfl) genome that assembles noninfectious SIV particles and expresses all nine SIV gene products. This rDNA/rRRV-SIVnfl vaccine regimen induced persistent anti-Env antibodies and CD8+ T-cell responses against the entire SIV proteome. Vaccine efficacy was assessed by repeated, marginal-dose, intrarectal challenges with SIVmac239. Encouragingly, vaccinees in Group 1 acquired SIVmac239 infection at a significantly delayed rate compared to unvaccinated controls (Group 3). In an attempt to improve upon this outcome, a separate group of rDNA/rRRV-SIVnfl-vaccinated RMs (Group 2) was treated with a cytotoxic T-lymphocyte antigen-4 (CTLA-4)-blocking monoclonal antibody during the vaccine phase and then challenged in parallel with Groups 1 and 3. Surprisingly, Group 2 was not significantly protected against SIVmac239 infection. In sum, SIVnfl vaccination can protect RMs against rigorous mucosal challenges with SIVmac239, a feat that until now had only been accomplished by live-attenuated strains of SIV. Further work is needed to identify the minimal requirements for this protection and whether SIVnfl vaccine efficacy can be improved by means other than anti-CTLA-4 adjuvant therapy.


Asunto(s)
Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Animales , Anticuerpos Antivirales/metabolismo , Especificidad de Anticuerpos , Linfocitos T CD8-positivos/inmunología , Antígeno CTLA-4/antagonistas & inhibidores , Femenino , Interacciones Microbiota-Huesped/inmunología , Humanos , Esquemas de Inmunización , Inmunización Secundaria , Macaca mulatta , Masculino , Recto/inmunología , Recto/virología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
12.
Cytometry A ; 99(3): 278-288, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32713108

RESUMEN

A vaccine to ameliorate cytomegalovirus (CMV)-related pathogenicity in transplantation patients is considered a top priority. A therapeutic vaccine must include components that elicit both neutralizing antibodies, and highly effective CD8 T-cell responses. The most important translational model of vaccine development is the captive-bred rhesus macaque (Macaca mulatta) of Indian origin. There is a dearth of information on rhesus cytomegalovirus (rhCMV)-specific CD8 T cells due to the absence of well-defined CD8 T-cell epitopes presented by classical MHC-I molecules. In the current study, we defined two CD8 T-cell epitopes restricted by high-frequency Mamu alleles: the Mamu-A1*002:01 restricted VY9 (VTTLGMALY aa291-299) epitope of protein IE-1, and the Mamu-A1*008:01 restricted NP8 (NPTDRPIP aa96-103) epitope of protein phosphoprotein 65-2. We developed tetramers and determined the level, phenotype, and functional capability of the two epitope-specific T-cell populations in circulation and various tissues. We demonstrated the value of these tetramers for in situ tetramer staining. Here, we first provided critical reagents and established a flow cytometric staining strategy to study rhCMV-specific T-cell responses in up to 40% of captive-bred rhesus macaques. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Infecciones por Citomegalovirus , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD8-positivos , Citomegalovirus , Epítopos de Linfocito T , Antígenos de Histocompatibilidad Clase I , Humanos , Inmunofenotipificación , Macaca mulatta
13.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541854

RESUMEN

Approximately 50% of rhesus macaques (RMs) expressing the major histocompatibility complex class I (MHC-I) allele Mamu-B*08 spontaneously control chronic-phase viremia after infection with the pathogenic simian immunodeficiency virus mac239 (SIVmac239) clone. CD8+ T-cell responses in these animals are focused on immunodominant Mamu-B*08-restricted SIV epitopes in Vif and Nef, and prophylactic vaccination with these epitopes increases the incidence of elite control in SIVmac239-infected Mamu-B*08-positive (Mamu-B*08+ ) RMs. Here we evaluated if robust vaccine-elicited CD8+ T-cell responses against Vif and Nef can prevent systemic infection in Mamu-B*08+ RMs following mucosal SIV challenges. Ten Mamu-B*08+ RMs were vaccinated with a heterologous prime/boost/boost regimen encoding Vif and Nef, while six sham-vaccinated MHC-I-matched RMs served as the controls for this experiment. Vaccine-induced CD8+ T cells against Mamu-B*08-restricted SIV epitopes reached high frequencies in blood but were present at lower levels in lymph node and gut biopsy specimens. Following repeated intrarectal challenges with SIVmac239, all control RMs became infected by the sixth SIV exposure. By comparison, four vaccinees were still uninfected after six challenges, and three of them remained aviremic after 3 or 4 additional challenges. The rate of SIV acquisition in the vaccinees was numerically lower (albeit not statistically significantly) than that in the controls. However, peak viremia was significantly reduced in infected vaccinees compared to control animals. We found no T-cell markers that distinguished vaccinees that acquired SIV infection from those that did not. Additional studies will be needed to validate these findings and determine if cellular immunity can be harnessed to prevent the establishment of productive immunodeficiency virus infection.IMPORTANCE It is generally accepted that the antiviral effects of vaccine-induced classical CD8+ T-cell responses against human immunodeficiency virus (HIV) are limited to partial reductions in viremia after the establishment of productive infection. Here we show that rhesus macaques (RMs) vaccinated with Vif and Nef acquired simian immunodeficiency virus (SIV) infection at a lower (albeit not statistically significant) rate than control RMs following repeated intrarectal challenges with a pathogenic SIV clone. All animals in the present experiment expressed the elite control-associated major histocompatibility complex class I (MHC-I) molecule Mamu-B*08 that binds immunodominant epitopes in Vif and Nef. Though preliminary, these results provide tantalizing evidence that the protective efficacy of vaccine-elicited CD8+ T cells may be greater than previously thought. Future studies should examine if vaccine-induced cellular immunity can prevent systemic viral replication in RMs that do not express MHC-I alleles associated with elite control of SIV infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Productos del Gen nef/inmunología , Productos del Gen vif/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Epítopos de Linfocito T/inmunología , Productos del Gen nef/administración & dosificación , Productos del Gen vif/administración & dosificación , Antígenos de Histocompatibilidad Clase I/inmunología , Macaca mulatta , Vacunación , Vacunas Virales/inmunología , Viremia/inmunología
14.
PLoS Pathog ; 14(6): e1007143, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29912986

RESUMEN

The properties of the human immunodeficiency virus (HIV) pose serious difficulties for the development of an effective prophylactic vaccine. Here we describe the construction and characterization of recombinant (r), replication-competent forms of rhesus monkey rhadinovirus (RRV), a gamma-2 herpesvirus, containing a near-full-length (nfl) genome of the simian immunodeficiency virus (SIV). A 306-nucleotide deletion in the pol gene rendered this nfl genome replication-incompetent as a consequence of deletion of the active site of the essential reverse transcriptase enzyme. Three variations were constructed to drive expression of the SIV proteins: one with SIV's own promoter region, one with a cytomegalovirus (cmv) immediate-early promoter/enhancer region, and one with an RRV dual promoter (p26 plus PAN). Following infection of rhesus fibroblasts in culture with these rRRV vectors, synthesis of the early protein Nef and the late structural proteins Gag and Env could be demonstrated. Expression levels of the SIV proteins were highest with the rRRV-SIVcmv-nfl construct. Electron microscopic examination of rhesus fibroblasts infected with rRRV-SIVcmv-nfl revealed numerous budding and mature SIV particles and these infected cells released impressive levels of p27 Gag protein (>150 ng/ml) into the cell-free supernatant. The released SIV particles were shown to be incompetent for replication. Monkeys inoculated with rRRV-SIVcmv-nfl became persistently infected, made readily-detectable antibodies against SIV, and developed T-cell responses against all nine SIV gene products. Thus, rRRV expressing a near-full-length SIV genome mimics live-attenuated strains of SIV in several important respects: the infection is persistent; >95% of the SIV proteome is naturally expressed; SIV particles are formed; and CD8+ T-cell responses are maintained indefinitely in an effector-differentiated state. Although the magnitude of anti-SIV immune responses in monkeys infected with rRRV-SIVcmv-nfl falls short of what is seen with live-attenuated SIV infection, further experimentation seems warranted.


Asunto(s)
Gammaherpesvirinae/inmunología , Vectores Genéticos/inmunología , Genoma Viral/inmunología , Infecciones por Herpesviridae/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Proteínas Virales/inmunología , Virión/inmunología , Animales , Gammaherpesvirinae/genética , Vectores Genéticos/genética , Infecciones por Herpesviridae/virología , Humanos , Inmunidad Celular , Macaca mulatta , Proteínas Virales/genética , Virión/genética
15.
J Virol ; 92(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29237831

RESUMEN

Nef-specific CD8+ T lymphocytes (CD8TL) are linked to extraordinary control of primate lentiviral replication, but the mechanisms underlying their efficacy remain largely unknown. The immunodominant, Mamu-B*017:01+-restricted Nef195-203MW9 epitope in SIVmac239 partially overlaps a sorting motif important for interactions with host AP-2 proteins and, hence, downmodulation of several host proteins, including Tetherin (CD317/BST-2), CD28, CD4, SERINC3, and SERINC5. We reasoned that CD8TL-driven evolution in this epitope might compromise Nef's ability to modulate these important molecules. Here, we used deep sequencing of SIV from nine B*017:01+ macaques throughout infection with SIVmac239 to characterize the patterns of viral escape in this epitope and then assayed the impacts of these variants on Nef-mediated modulation of multiple host molecules. Acute variation in multiple Nef195-203MW9 residues significantly compromised Nef's ability to downregulate surface Tetherin, CD4, and CD28 and reduced its ability to prevent SERINC5-mediated reduction in viral infectivity but did not impact downregulation of CD3 or major histocompatibility complex class I, suggesting the selective disruption of immunomodulatory pathways involving Nef AP-2 interactions. Together, our data illuminate a pattern of viral escape dictated by a selective balance to maintain AP-2-mediated downregulation while evading epitope-specific CD8TL responses. These data could shed light on mechanisms of both CD8TL-driven viral control generally and on Mamu-B*017:01-mediated viral control specifically.IMPORTANCE A rare subset of humans infected with HIV-1 and macaques infected with SIV can control the virus without aid of antiviral medications. A common feature of these individuals is the ability to mount unusually effective CD8 T lymphocyte responses against the virus. One of the most formidable aspects of HIV is its ability to evolve to evade immune responses, particularly CD8 T lymphocytes. We show that macaques that target a specific peptide in the SIV Nef protein are capable of better control of the virus and that, as the virus evolves to escape this response, it does so at a cost to specific functions performed by the Nef protein. Our results help show how the virus can be controlled by an immune response, which could help in designing effective vaccines.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Epítopos de Linfocito T/inmunología , Evasión Inmune/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Proteínas Reguladoras y Accesorias Virales/inmunología , Animales , Evolución Biológica , Antígeno 2 del Estroma de la Médula Ósea/inmunología , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Epítopos de Linfocito T/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Macaca/virología , Glicoproteínas de Membrana , Proteínas de la Membrana , Mutación , Proteínas de Neoplasias , ARN Viral , Receptores de Superficie Celular , Análisis de Secuencia , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Proteínas del Envoltorio Viral/inmunología , Proteínas Reguladoras y Accesorias Virales/genética , Replicación Viral , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología
16.
J Virol ; 92(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118125

RESUMEN

Developing biological interventions to control human immunodeficiency virus (HIV) replication in the absence of antiretroviral therapy (ART) could contribute to the development of a functional cure. As a potential alternative to ART, the interleukin-15 (IL-15) superagonist ALT-803 has been shown to boost the number and function of HIV-specific CD8+ T and NK cell populations in vitro Four simian immunodeficiency virus (SIV)-positive rhesus macaques, three of whom possessed major histocompatibility complex alleles associated with control of SIV and all of whom had received SIV vaccine vectors that had the potential to elicit CD8+ T cell responses, were given ALT-803 in three treatment cycles. The first and second cycles of treatment were separated by 2 weeks, while the third cycle was administered after a 29-week break. ALT-803 transiently elevated the total CD8+ effector and central memory T cell and NK cell populations in peripheral blood, while viral loads transiently decreased by ∼2 logs in all animals. Virus suppression was not sustained as T cells became less responsive to ALT-803 and waned in numbers. No effect on viral loads was observed in the second cycle of ALT-803, concurrent with downregulation of the IL-2/15 common γC and ß chain receptors on both CD8+ T cells and NK cells. Furthermore, populations of immunosuppressive T cells increased during the second cycle of ALT-803 treatment. During the third treatment cycle, responsiveness to ALT-803 was restored. CD8+ T cells and NK cells increased again 3- to 5-fold, and viral loads transiently decreased again by 1 to 2 logs.IMPORTANCE Overall, our data show that ALT-803 has the potential to be used as an immunomodulatory agent to elicit effective immune control of HIV/SIV replication. We identify mechanisms to explain why virus control is transient, so that this model can be used to define a clinically appropriate treatment regimen.


Asunto(s)
Proteínas/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Anticuerpos Monoclonales/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular , Modelos Animales de Enfermedad , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Macaca mulatta , Proteínas Recombinantes de Fusión , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Carga Viral
17.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29875239

RESUMEN

Certain major histocompatibility complex class I (MHC-I) alleles are associated with spontaneous control of viral replication in human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs). These cases of "elite" control of HIV/SIV replication are often immune-mediated, thereby providing a framework for studying anti-lentiviral immunity. In this study, we examined how vaccination impacts SIV replication in RMs expressing the MHC-I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ and 50% of Mamu-B*08+ RMs control chronic-phase viremia after SIVmac239 infection. Because CD8+ T cells targeting Mamu-B*08-restricted SIV epitopes have been implicated in virologic suppression in Mamu-B*08+ RMs, we investigated whether this might also be true for Mamu-B*17+ RMs. Two groups of Mamu-B*17+ RMs were vaccinated with genes encoding Mamu-B*17-restricted epitopes in Vif and Nef. These genes were delivered by themselves (group 1) or together with env (group 2). Group 3 included MHC-I-matched RMs and served as the control group. Surprisingly, the group 1 vaccine regimen had little effect on viral replication compared to group 3, suggesting that unlike Mamu-B*08+ RMs, preexisting SIV-specific CD8+ T cells alone do not facilitate long-term virologic suppression in Mamu-B*17+ RMs. Remarkably, however, 5/8 group 2 vaccinees controlled viremia to <15 viral RNA copies/ml soon after infection. No serological neutralizing activity against SIVmac239 was detected in group 2, although vaccine-elicited gp140-binding antibodies correlated inversely with nadir viral loads. Collectively, these data shed new light on the unique mechanism of elite control in Mamu-B*17+ RMs and implicate vaccine-induced, nonneutralizing anti-Env antibodies in the containment of immunodeficiency virus infection.IMPORTANCE A better understanding of the immune correlates of protection against HIV might facilitate the development of a prophylactic vaccine. Therefore, we investigated simian immunodeficiency virus (SIV) infection outcomes in rhesus macaques expressing the major histocompatibility complex class I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ macaques spontaneously controlled chronic phase viremia after SIV infection, an effect that may involve CD8+ T cells targeting Mamu-B*17-restricted SIV epitopes. We vaccinated Mamu-B*17+ macaques with genes encoding immunodominant epitopes in Vif and Nef alone (group 1) or together with env (group 2). Although neither vaccine regimen prevented SIV infection, 5/8 group 2 vaccinees controlled viremia to below detection limits shortly after infection. This outcome, which was not observed in group 1, was associated with vaccine-induced, nonneutralizing Env-binding antibodies. Together, these findings suggest a limited contribution of Vif- and Nef-specific CD8+ T cells for virologic control in Mamu-B*17+ macaques and implicate anti-Env antibodies in containment of SIV infection.


Asunto(s)
Productos del Gen env/inmunología , Productos del Gen nef/inmunología , Productos del Gen vif/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Alelos , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Macaca mulatta , Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Carga Viral , Viremia/prevención & control , Replicación Viral
18.
PLoS Pathog ; 13(7): e1006506, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28708886

RESUMEN

Natural killer cells provide an important early defense against viral pathogens and are regulated in part by interactions between highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their MHC class I ligands on target cells. We previously identified MHC class I ligands for two rhesus macaque KIRs: KIR3DL01 recognizes Mamu-Bw4 molecules and KIR3DL05 recognizes Mamu-A1*002. To determine how these interactions influence NK cell responses, we infected KIR3DL01+ and KIR3DL05+ macaques with and without defined ligands for these receptors with SIVmac239, and monitored NK cell responses in peripheral blood and lymphoid tissues. NK cell responses in blood were broadly stimulated, as indicated by rapid increases in the CD16+ population during acute infection and sustained increases in the CD16+ and CD16-CD56- populations during chronic infection. Markers of proliferation (Ki-67), activation (CD69 & HLA-DR) and antiviral activity (CD107a & TNFα) were also widely expressed, but began to diverge during chronic infection, as reflected by sustained CD107a and TNFα upregulation by KIR3DL01+, but not by KIR3DL05+ NK cells. Significant increases in the frequency of KIR3DL01+ (but not KIR3DL05+) NK cells were also observed in tissues, particularly in the gut-associated lymphoid tissues, where this receptor was preferentially upregulated on CD56+ and CD16-CD56- subsets. These results reveal broad NK cell activation and dynamic changes in the phenotypic properties of NK cells in response to SIV infection, including the enrichment of KIR3DL01+ NK cells in tissues that support high levels of virus replication.


Asunto(s)
Tracto Gastrointestinal/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Células Asesinas Naturales/inmunología , Receptores KIR3DL1/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Animales , Degranulación de la Célula , Proliferación Celular , Citocinas/inmunología , Femenino , Tracto Gastrointestinal/virología , Antígenos de Histocompatibilidad Clase I/inmunología , Células Asesinas Naturales/citología , Tejido Linfoide/inmunología , Macaca mulatta , Masculino , Receptores KIR3DL1/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/fisiopatología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Regulación hacia Arriba
19.
PLoS Pathog ; 13(7): e1006529, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28732035

RESUMEN

The ability to control lentivirus replication may be determined, in part, by the extent to which individual viral proteins are targeted by the immune system. Consequently, defining the antigens that elicit the most protective immune responses may facilitate the design of effective HIV-1 vaccines. Here we vaccinated four groups of rhesus macaques with a heterologous vector prime/boost/boost/boost (PBBB) regimen expressing the following simian immunodeficiency virus (SIV) genes: env, gag, vif, rev, tat, and nef (Group 1); env, vif, rev, tat, and nef (Group 2); gag, vif, rev, tat, and nef (Group 3); or vif, rev, tat, and nef (Group 4). Following repeated intrarectal challenges with a marginal dose of the neutralization-resistant SIVmac239 clone, vaccinees in Groups 1-3 became infected at similar rates compared to control animals. Unexpectedly, vaccinees in Group 4 became infected at a slower pace than the other animals, although this difference was not statistically significant. Group 1 exhibited the best post-acquisition virologic control of SIV infection, with significant reductions in both peak and chronic phase viremia. Indeed, 5/8 Group 1 vaccinees had viral loads of less than 2,000 vRNA copies/mL of plasma in the chronic phase. Vaccine regimens that did not contain gag (Group 2), env (Group 3), or both of these inserts (Group 4) were largely ineffective at decreasing viremia. Thus, vaccine-induced immune responses against both Gag and Env appeared to maximize control of immunodeficiency virus replication. Collectively, these findings are relevant for HIV-1 vaccine design as they provide additional insights into which of the lentiviral proteins might serve as the best vaccine immunogens.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/inmunología , Recto/virología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Infecciones por VIH/virología , VIH-1/genética , VIH-1/fisiología , Humanos , Macaca mulatta , Recto/inmunología , Vacunas contra el SIDAS/administración & dosificación , Vacunas contra el SIDAS/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Replicación Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
20.
PLoS Pathog ; 13(5): e1006378, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28542585

RESUMEN

Infection with Zika virus (ZIKV) is associated with human congenital fetal anomalies. To model fetal outcomes in nonhuman primates, we administered Asian-lineage ZIKV subcutaneously to four pregnant rhesus macaques. While non-pregnant animals in a previous study contemporary with the current report clear viremia within 10-12 days, maternal viremia was prolonged in 3 of 4 pregnancies. Fetal head growth velocity in the last month of gestation determined by ultrasound assessment of head circumference was decreased in comparison with biparietal diameter and femur length within each fetus, both within normal range. ZIKV RNA was detected in tissues from all four fetuses at term cesarean section. In all pregnancies, neutrophilic infiltration was present at the maternal-fetal interface (decidua, placenta, fetal membranes), in various fetal tissues, and in fetal retina, choroid, and optic nerve (first trimester infection only). Consistent vertical transmission in this primate model may provide a platform to assess risk factors and test therapeutic interventions for interruption of fetal infection. The results may also suggest that maternal-fetal ZIKV transmission in human pregnancy may be more frequent than currently appreciated.


Asunto(s)
Transmisión Vertical de Enfermedad Infecciosa , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Líquido Amniótico/virología , Animales , Decidua/patología , Decidua/virología , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal , Feto , Humanos , Pulmón/patología , Pulmón/virología , Macaca mulatta , Placenta/patología , Placenta/virología , Embarazo , ARN Viral/análisis , Bazo/patología , Bazo/virología , Cordón Umbilical/patología , Cordón Umbilical/virología , Viremia , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA