Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Rheumatol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089831

RESUMEN

OBJECTIVE: Dermatomyositis (DM) symptoms negatively impact the quality of life of individuals living with the disease. Disease-specific, patient-reported outcome (PRO) instruments are needed to assess symptoms important to individuals with DM. This study conceptualized patient DM experience and disease activity definition, which refined development of a novel PRO instrument capturing patient-reported symptoms, the Dermatomyositis Disease Symptom Questionnaire (DM-DSQ). METHODS: An observational, qualitative study was conducted with 30 individuals with DM (age ≥18 years) in the US. A 1-hour semi-structured interview, including concept elicitation and cognitive debriefing, was conducted with each participant. Inductive coding was used to identify concepts; a saturation analysis was conducted to confirm sample size. Concepts from transcripts were used to refine the preliminary conceptual model and DM-DSQ items. RESULTS: Concept elicitation analysis findings included disease symptoms (e.g., muscle weakness) and functional impacts (e.g., walking). The analysis achieved conceptual saturation: the first 5 interviews uncovered most of the concepts. During cognitive debriefing of the DMDSQ, participants found the items relevant, comprehensive, and easily understood (except for "skin sensitivity in sunlight"). The revised DM-DSQ content preliminarily appears valid in the patient population surveyed, pending further additions and debriefing based on refinement of the preliminary conceptual disease model and items. CONCLUSION: The DM-DSQ is being used in a phase 2 clinical trial and could become a valuable tool for studies evaluating PROs in patients with DM. Preliminary results indicate its content validity; extensive psychometric analysis using clinical trial data will determine its ability to capture symptoms for patients with DM.

2.
Int Immunol ; 31(6): 407-412, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30783682

RESUMEN

Integrin α2ß1, also known as very late antigen (VLA)-2, is a collagen-binding molecule expressed constitutively on platelets. Vatelizumab, a monoclonal antibody targeting the α2 subunit (CD49b) of VLA-2, was recently investigated for its safety and efficacy during a Phase 2 clinical study in multiple sclerosis patients, as integrin-mediated collagen binding at the site of inflammation is central to a number of downstream pro-inflammatory events. In the course of this study, we could show that VLA-2 is expressed ex vivo on platelets, platelet-T-cell aggregates, as well as a small population of highly activated memory T cells. Even though the clinical trial did not meet its primary clinical end-point (reduction in the cumulative number of new contrast-enhancing lesions on magnetic resonance imaging (MRI)), we observed enhanced frequencies of regulatory T cells (TREG) following vatelizumab treatment. Elevated TREG frequencies might be explained by the inhibition of p38 mitogen-activated protein kinase (MAPK) signaling, which is critically involved in the polarization of T helper 17 (TH17) cells and is activated by the α2 integrin cytoplasmic domain. Our findings suggest that blockade of VLA-2 might be a way to safely shift the TH17/TREG balance by inducing TREGin vivo.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Plaquetas/metabolismo , Integrina alfa2/metabolismo , Integrina alfa2beta1/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Antígenos CD4/metabolismo , Colágeno/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Memoria Inmunológica , Integrina alfa2/inmunología , Integrina alfa2beta1/antagonistas & inhibidores , Activación de Linfocitos , Sistema de Señalización de MAP Quinasas , Transducción de Señal
3.
Neurobiol Dis ; 116: 120-130, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29738885

RESUMEN

Neonatal seizures disrupt normal synaptic maturation and often lead to later-life epilepsy and cognitive deficits. During early life, the brain exhibits heightened synaptic plasticity, in part due to a developmental overabundance of CaV1.2 L-type voltage gated calcium (Ca2+) channels (LT-VGCCs) and Ca2+-permeable AMPARs (CP-AMPARs) lacking GluA2 subunits. We hypothesized that early-life seizures overactivate these channels, in turn dysregulating Ca2+-dependent signaling pathways including that of methyl CPG binding protein 2 (MeCP2), a transcription factor implicated in the autism spectrum disorder (ASD) Rett Syndrome. Here, we show that in vivo hypoxia-induced seizures (HS) in postnatal day (P)10 rats acutely induced phosphorylation of the neuronal-specific target of activity-dependent MeCP2 phosphorylation, S421, as well as its upstream activator CaMKII T286. We next identified mechanisms by which activity-dependent Ca2+ influx induced MeCP2 phosphorylation using in vitro cortical and hippocampal neuronal cultures at embryonic day (E)18 + 10 days in vitro (DIV). In contrast to the prevalent role of NMDARs in the adult brain, we found that both CP-AMPARs and LT-VGCCs mediated MeCP2 S421 and CaMKII T286 phosphorylation induced by kainic acid (KA) or high potassium chloride (KCl) stimulation. Furthermore, in vivo post-seizure treatment with the broad-spectrum AMPAR antagonist NBQX, the CP-AMPAR blocker IEM-1460, or the LT-VGCC antagonist nimodipine blocked seizure-induced MeCP2 phosphorylation. Collectively, these results demonstrate that early-life seizures dysregulate critical activity-dependent developmental signaling pathways, in part via CP-AMPAR and LT-VGCC activation, providing novel age-specific therapeutic targets for convergent pathways underlying epilepsy and ASDs.


Asunto(s)
Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Convulsiones/metabolismo , Serina/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/crecimiento & desarrollo , Hipocampo/crecimiento & desarrollo , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Fosforilación/fisiología , Ratas , Convulsiones/genética , Serina/genética
4.
J Neurosci ; 32(49): 17800-12, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23223299

RESUMEN

Neonatal seizures can lead to later life epilepsy and neurobehavioral deficits, and there are no treatments to prevent these sequelae. We showed previously that hypoxia-induced seizures in a neonatal rat model induce rapid phosphorylation of serine-831 (S831) and Serine 845 (S845) sites of the AMPA receptor GluR1 subunit and later neuronal hyperexcitability and epilepsy, suggesting that seizure-induced posttranslational modifications may represent a novel therapeutic target. To unambiguously assess the contribution of these sites, we examined seizure susceptibility in wild-type mice versus transgenic knock-in mice with deficits in GluR1 S831 and S845 phosphorylation [GluR1 double-phosphomutant (GluR1 DPM) mice]. Phosphorylation of the GluR1 S831 and S845 sites was significantly increased in the hippocampus and cortex after a single episode of pentyleneterazol-induced seizures in postnatal day 7 (P7) wild-type mouse pups and that transgenic knock-in mice have a higher threshold and longer latencies to seizures. Like the rat, hypoxic seizures in P9 C57BL/6N wild-type mice resulted in transient increases in GluR1 S831 and GluR1 S845 phosphorylation in cortex and were associated with enhanced seizure susceptibility to later-life kainic-acid-induced seizures. In contrast, later-life seizure susceptibility after hypoxia-induced seizures was attenuated in GluR1 DPM mice, supporting a role for posttranslational modifications in seizure-induced network excitability. Finally, human hippocampal samples from neonatal seizure autopsy cases also showed an increase in GluR1 S831 and S845, supporting the validation of this potential therapeutic target in human tissue.


Asunto(s)
Susceptibilidad a Enfermedades/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Receptores AMPA/metabolismo , Receptores AMPA/fisiología , Convulsiones/metabolismo , Animales , Animales Recién Nacidos , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas de Sustitución del Gen/métodos , Guanilato-Quinasas/biosíntesis , Humanos , Hipoxia , Ácido Kaínico , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Pentilenotetrazol , Fosforilación , Receptores AMPA/genética , Convulsiones/inducido químicamente , Serina/metabolismo
5.
Epilepsia ; 54(11): 1922-32, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24117347

RESUMEN

PURPOSE: To determine whether AMPA receptor (AMPAR) antagonist NBQX can prevent early mammalian target of rapamycin (mTOR) pathway activation and long-term sequelae following neonatal seizures in rats, including later-life spontaneous recurrent seizures, CA3 mossy fiber sprouting, and autistic-like social deficits. METHODS: Long-Evans rats experienced hypoxia-induced neonatal seizures (HS) at postnatal day (P)10. NBQX (20 mg/kg) was administered immediately following HS (every 12 h × 4 doses). Twelve hours post-HS, we assessed mTOR activation marker phosphorylated p70-S6 kinase (p-p70S6K) in hippocampus and cortex of vehicle (HS + V) or NBQX-treated post-HS rats (HS + N) versus littermate controls (C + V). Spontaneous seizure activity was compared between groups by epidural cortical electroencephalography (EEG) at P70-100. Aberrant mossy fiber sprouting was measured using Timm staining. Finally, we assessed behavior between P30 and P38. KEY FINDINGS: Postseizure NBQX treatment significantly attenuated seizure-induced increases in p-p70S6K in the hippocampus (p < 0.01) and cortex (p < 0.001). Although spontaneous recurrent seizures increased in adulthood in HS + V rats compared to controls (3.22 ± 1 seizures/h; p = 0.03), NBQX significantly attenuated later-life seizures (0.14 ± 0.1 seizures/h; p = 0.046). HS + N rats showed less aberrant mossy fiber sprouting (115 ± 8.0%) than vehicle-treated post-HS rats (174 ± 10%, p = 0.004), compared to controls (normalized to 100%). Finally, NBQX treatment prevented alterations in later-life social behavior; post-HS rats showed significantly decreased preference for a novel over a familiar rat (71.0 ± 12 s) compared to controls (99.0 ± 15.6 s; p < 0.01), whereas HS + N rats showed social novelty preference similar to controls (114.3 ± 14.1 s). SIGNIFICANCE: Brief NBQX administration during the 48 h postseizure in P10 Long-Evans rats suppresses transient mTOR pathway activation and attenuates spontaneous recurrent seizures, social preference deficits, and mossy fiber sprouting observed in vehicle-treated adult rats after early life seizures. These results suggest that acute AMPAR antagonist treatment during the latent period immediately following neonatal HS can modify seizure-induced activation of mTOR, reduce the frequency of later-life seizures, and protect against CA3 mossy fiber sprouting and autistic-like social deficits.


Asunto(s)
Neuronas/metabolismo , Quinoxalinas/farmacología , Receptores AMPA/antagonistas & inhibidores , Convulsiones/tratamiento farmacológico , Envejecimiento , Animales , Animales Recién Nacidos , Trastorno Autístico/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratas , Ratas Long-Evans , Receptores AMPA/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo
6.
Epilepsy Behav ; 26(2): 143-52, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23291250

RESUMEN

Methods for rapid and objective quantification of interictal spikes in raw, unprocessed electroencephalogram (EEG) samples are scarce. We evaluated the accuracy of a tailored automated spike quantification algorithm. The automated quantification was compared with the quantification by two board-certified clinical neurophysiologists (gold-standard) in five steps: 1) accuracy in a single EEG channel (5 EEG samples), 2) accuracy in multiple EEG channels and across different stages of the sleep-wake cycles (75 EEG samples), 3) capacity to detect lateralization of spikes (6 EEG samples), 4) accuracy after application of a machine-learning mechanism (11 EEG samples), and 5) accuracy during wakefulness only (8 EEG samples). Our method was accurate during all stages of the sleep-wake cycle and improved after the application of the machine-learning mechanism. Spikes were correctly lateralized in all cases. Our automated method was accurate in quantifying and detecting the lateralization of interictal spikes in raw unprocessed EEG samples.


Asunto(s)
Corteza Cerebral/fisiología , Electroencefalografía/métodos , Epilepsia/diagnóstico , Procesamiento de Señales Asistido por Computador , Algoritmos , Epilepsia/fisiopatología , Humanos , Sueño/fisiología , Análisis de Ondículas
7.
Epilepsia ; 52(4): 753-65, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21366558

RESUMEN

PURPOSE: To study the development of epilepsy following hypoxia-induced neonatal seizures in Long-Evans rats and to establish the presence of spontaneous seizures in this model of early life seizures. METHODS: Long-Evans rat pups were subjected to hypoxia-induced neonatal seizures at postnatal day 10 (P10). Epidural cortical electroencephalography (EEG) and hippocampal depth electrodes were used to detect the presence of seizures in later adulthood (> P60). In addition, subdermal wire electrode recordings were used to monitor age at onset and progression of seizures in the juvenile period, at intervals between P10 and P60. Timm staining was performed to evaluate mossy fiber sprouting in the hippocampi of P100 adult rats that had experienced neonatal seizures. KEY FINDINGS: In recordings made from adult rats (P60-180), the prevalence of epilepsy in cortical and hippocampal EEG recordings was 94.4% following early life hypoxic seizures. These spontaneous seizures were identified by characteristic spike and wave activity on EEG accompanied by behavioral arrest and facial automatisms (electroclinical seizures). Phenobarbital injection transiently abolished spontaneous seizures. EEG in the juvenile period (P10-60) showed that spontaneous seizures first occurred approximately 2 weeks after the initial episode of hypoxic seizures. Following this period, spontaneous seizure frequency and duration increased progressively with time. Furthermore, significantly increased sprouting of mossy fibers was observed in the CA3 pyramidal cell layer of the hippocampus in adult animals following hypoxia-induced neonatal seizures. Notably, Fluoro-Jade B staining confirmed that hypoxic seizures at P10 did not induce acute neuronal death. SIGNIFICANCE: The rodent model of hypoxia-induced neonatal seizures leads to the development of epilepsy in later life, accompanied by increased mossy fiber sprouting. In addition, this model appears to exhibit a seizure-free latent period, following which there is a progressive increase in the frequency of electroclinical seizures.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia/etiología , Hipoxia Encefálica/complicaciones , Convulsiones/etiología , Animales , Animales Recién Nacidos , Humanos , Recién Nacido , Ratas , Ratas Long-Evans
8.
J Neurosci ; 28(32): 7979-90, 2008 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-18685023

RESUMEN

The highest incidence of seizures during lifetime is found in the neonatal period and neonatal seizures lead to a propensity for epilepsy and long-term cognitive deficits. Here, we identify potential mechanisms that elucidate a critical role for AMPA receptors (AMPARs) in epileptogenesis during this critical period in the developing brain. In a rodent model of neonatal seizures, we have shown previously that administration of antagonists of the AMPARs during the 48 h after seizures prevents long-term increases in seizure susceptibility and seizure-induced neuronal injury. Hypoxia-induced seizures in postnatal day 10 rats induce rapid and reversible alterations in AMPAR signaling resembling changes implicated previously in models of synaptic potentiation in vitro. Hippocampal slices removed after hypoxic seizures exhibited potentiation of AMPAR-mediated synaptic currents, including an increase in the amplitude and frequency of spontaneous and miniature EPSCs as well as increased synaptic potency. This increased excitability was temporally associated with a rapid increase in phosphorylation at GluR1 S845/S831 and GluR2 S880 sites and increased activity of the protein kinases CaMKII (calcium/calmodulin-dependent protein kinase II), PKA, and PKC, which mediate the phosphorylation of these AMPAR subunits. Postseizure administration of AMPAR antagonists NBQX (2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline), topiramate, or GYKI-53773 [(1)-1-(4-aminophenyl)-3-acetyl-4-methyl-7,8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine] attenuated the AMPAR potentiation, phosphorylation, and kinase activation and prevented the concurrent increase in in vivo seizure susceptibility. Thus, the potentiation of AMPAR-containing synapses is a reversible, early step in epileptogenesis that offers a novel therapeutic target in the highly seizure-prone developing brain.


Asunto(s)
Animales Recién Nacidos , Epilepsia/fisiopatología , Receptores AMPA/metabolismo , Sinapsis , Animales , Anticonvulsivantes/farmacología , Benzodiazepinas/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Susceptibilidad a Enfermedades , Activación Enzimática/efectos de los fármacos , Epilepsia/etiología , Epilepsia/metabolismo , Potenciales Postsinápticos Excitadores , Fructosa/análogos & derivados , Fructosa/farmacología , Hipoxia/complicaciones , Masculino , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Quinoxalinas/farmacología , Ratas , Ratas Long-Evans , Receptores AMPA/antagonistas & inhibidores , Topiramato
9.
BMC Bioinformatics ; 5: 99, 2004 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-15272935

RESUMEN

BACKGROUND: cDNA microarrays are a powerful means to screen for biologically relevant gene expression changes, but are often limited by their ability to detect small changes accurately due to "noise" from random and systematic errors. While experimental designs and statistical analysis methods have been proposed to reduce these errors, few studies have tested their accuracy and ability to identify small, but biologically important, changes. Here, we have compared two cDNA microarray experimental design methods with northern blot confirmation to reveal changes in gene expression that could contribute to the early antiproliferative effects of neuregulin on MCF10AT human breast epithelial cells. RESULTS: We performed parallel experiments on identical samples using a dye-swap design with ANOVA and an experimental design that excludes systematic biases by "correcting" experimental/control hybridization ratios with control/control hybridizations on a spot-by-spot basis. We refer to this approach as the "control correction method" (CCM). Using replicate arrays, we identified a decrease in proliferation genes and an increase in differentiation genes. Using an arbitrary cut-off of 1.7-fold and p values <0.05, we identified a total of 32 differentially expressed genes, 9 with the dye-swap method, 18 with the CCM, and 5 genes with both methods. 23 of these 32 genes were subsequently verified by northern blotting. Most of these were <2-fold changes. While the dye-swap method (using either ANOVA or Bayesian analysis) detected a smaller number of genes (14-16) compared to the CCM (46), it was more accurate (89-92% vs. 75%). Compared to the northern blot results, for most genes, the microarray results underestimated the fold change, implicating the importance of detecting these small changes. CONCLUSIONS: We validated two experimental design paradigms for cDNA microarray experiments capable of detecting small (<2-fold) changes in gene expression with excellent fidelity that revealed potentially important genes associated with the anti-proliferative effects of neuregulin on MCF10AT breast epithelial cells.


Asunto(s)
Neoplasias de la Mama/patología , Células Epiteliales/efectos de los fármacos , Perfilación de la Expresión Génica/normas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neurregulina-1/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Northern Blotting/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , División Celular/efectos de los fármacos , Línea Celular Tumoral , Biología Computacional/normas , ADN Complementario/genética , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Modelos Genéticos , ARN Neoplásico/genética , Proteínas Recombinantes/farmacología , Proyectos de Investigación
10.
Neuroreport ; 25(12): 954-9, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-24978397

RESUMEN

Traumatic brain injury (TBI) is one of the leading causes of neurological disability and death in the USA across all age groups, ethnicities, and incomes. In addition to the short-term morbidity and mortality, TBI leads to epilepsy and severe neurocognitive symptoms, both of which are referenced to post-traumatic hippocampal dysfunction, although the mechanisms of such hippocampal dysfunction are incompletely understood. Here, we study the temporal profile of the transcription of three select immediate early gene (IEG) markers of neuronal hyperactivation, plasticity, and injury, c-fos, brain-derived neurotrophic factor (BDNF), and Bax, in the acute period following the epileptogenic lateral fluid percussion injury in a rodent TBI model. We found that lateral fluid percussion injury leads to enhanced expression of the selected IEGs within 24 h of TBI. Specifically, BDNF and c-fos increase maximally 1-6 h after TBI in the ipsilesional hippocampus, whereas Bax increases in the hippocampus bilaterally in this time window. Antagonism of the N-methyl-D-aspartate-type glutamate receptor by MK801 attenuates the increase in BDNF and Bax, which underscores a therapeutic role for N-methyl-D-aspartate-type glutamate receptor antagonism in the acute post-traumatic time period and suggests a value to a hippocampal IEG readout as an outcome after injury or acute therapeutic intervention.


Asunto(s)
Lesiones Encefálicas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Enfermedad Aguda , Animales , Lesiones Encefálicas/tratamiento farmacológico , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Lateralidad Funcional , Hipocampo/efectos de los fármacos , Masculino , ARN Mensajero/metabolismo , Ratas Long-Evans , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo , Transcripción Genética/efectos de los fármacos
11.
PLoS One ; 8(9): e74428, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086344

RESUMEN

Microarray profiling was used to investigate gene expression in the hypoxic seizure model of acquired epilepsy in the rat, with the aim of characterizing functional pathways which are persistently activated or repressed during epileptogenesis. Hippocampal and cortical tissues were transcriptionally profiled over a one week period following an initial series of seizures induced by mild hypoxia at post-natal day 10 (P10), and the gene expression data was then analyzed with a focus on gene set enrichment analysis, an approach which emphasizes regulation of entire pathways rather than of individual genes. Animals were subjected to one of three conditions: a control with no hypoxia, hypoxic seizures, and hypoxic seizures followed by treatment with the AMPAR antagonist NBQX, a compound currently proposed to be a modulator of epileptogenesis. While temporal gene expression in the control samples was found to be consistent with known processes of neuronal maturation in the rat for the given time window, the hypoxic seizure response was found to be enriched for components of the PI3K/mTOR and Wnt signaling pathways, alongside gene sets representative of glutamatergic, synaptic and axonal processes, perhaps regulated as a downstream consequence of activation of these pathways. Wnt signaling components were also found enriched in the more specifically epileptogenic NBQX-responsive gene set. While activation of the mTOR pathway is consistent with its known role in epileptogenesis and strengthens the case for mTOR or PI3K pathway inhibitors as potential anti-epileptogenic drugs, investigation of the role of Wnt signaling and the effect of appropriate inhibitors might offer a parallel avenue of research toward anti-epileptogenic treatment of epilepsy.


Asunto(s)
Perfilación de la Expresión Génica , Hipoxia/genética , Convulsiones/genética , Serina-Treonina Quinasas TOR/metabolismo , Vía de Señalización Wnt , Animales , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Hipoxia/complicaciones , Hipoxia/patología , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Quinoxalinas/farmacología , Ratas , Convulsiones/complicaciones , Convulsiones/patología , Factores de Tiempo , Vía de Señalización Wnt/efectos de los fármacos
12.
PLoS One ; 8(3): e57148, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23536761

RESUMEN

Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.


Asunto(s)
Bumetanida/administración & dosificación , Hipoxia/complicaciones , Fenobarbital/administración & dosificación , Convulsiones/etiología , Animales , Animales Recién Nacidos , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Bumetanida/farmacocinética , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Muerte Celular/efectos de los fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Electroencefalografía , Potenciales Evocados/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenobarbital/farmacocinética , Ratas , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Convulsiones/fisiopatología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/administración & dosificación , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Cotransportadores de K Cl
13.
Nat Rev Neurol ; 5(7): 380-91, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19578345

RESUMEN

Epileptogenesis is defined as the process of developing epilepsy-a disorder characterized by recurrent seizures-following an initial insult. Seizure incidence during the human lifespan is at its highest in infancy and childhood. Animal models of epilepsy and human tissue studies suggest that epileptogenesis involves a cascade of molecular, cellular and neuronal network alterations. Within minutes to days following the initial insult, there are acute early changes in neuronal networks, which include rapid alterations to ion channel kinetics as a result of membrane depolarization, post-translational modifications to existing functional proteins, and activation of immediate early genes. Subacute changes occur over hours to weeks, and include transcriptional events, neuronal death and activation of inflammatory cascades. The chronic changes that follow over weeks to months include anatomical changes, such as neurogenesis, mossy fiber sprouting, network reorganization, and gliosis. These epileptogenic processes are developmentally regulated and might contribute to differences in epileptogenesis between adult and developing brains. Here we review the factors responsible for enhanced seizure susceptibility in the developing brain, and consider age-specific mechanisms of epileptogenesis. An understanding of these factors could yield potential therapeutic targets for the prevention of epileptogenesis and also provide biomarkers for identifying patients at risk of developing epilepsy or for monitoring disease progression.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Epilepsia/etiología , Epilepsia/patología , Animales , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Epilepsia/fisiopatología , Humanos , Neurogénesis/fisiología
14.
Epilepsia ; 49(2): 226-36, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17868051

RESUMEN

PURPOSE: To study the differential expression of excitatory amino acid transporters (EAATs) at localized epileptic foci compared to nonepileptic regions in human neocortical epilepsy. Decreased expression of EAATs, the predominant mechanism to remove synaptic-released glutamate, may explain mechanisms of heightened excitability at these epileptic foci. METHODS: The differential expression of EAAT1-4 at the mRNA and protein levels was measured in electrically mapped human neocortical tissues using quantitative real-time PCR and immunoblotting. This required a novel way to prevent aggregation of EAAT proteins through cold solubilization. Layer-specific neuronal densities were measured to control for potential differences in neuronal density. RESULTS: While focal epileptic brain regions show marked increases in immediate early genes, they have significant reductions in the neuronal glutamate transporter mRNAs (EAAT3 and EAAT4). These changes were not associated with changes in relative neuronal density, suggesting a reduction in EAAT mRNA per neuron. Immunohistochemical staining of epileptic human neocortex confirmed the presence of EAAT1 and EAAT2 proteins in astroglial cells and EAAT3 and EAAT4 proteins in human cortical neurons. At the protein level, western blots of the same epileptic and nonepileptic regions for a subset of these patients showed a similar decrease of EAAT3 and EAAT4. Despite no change in EAAT2 mRNA, EAAT2 protein expression was significantly reduced at epileptic foci. CONCLUSION: Regional reductions in EAAT expression at human neocortical epileptic foci could produce increased local glutamate levels that in turn may contribute to both hyperexcitability and the spontaneous generation of epileptic discharges that characterize human epileptic foci.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Epilepsia/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Neocórtex/metabolismo , Encéfalo/metabolismo , Mapeo Encefálico , Glutamatos/metabolismo , Humanos , Neuronas/metabolismo , ARN Mensajero/metabolismo , Receptores de Glutamato/metabolismo
15.
Epilepsia ; 48 Suppl 5: 86-95, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17910586

RESUMEN

Interictal spikes are hallmarks of epileptic neocortex that are used commonly in both EEG and electrocorticography (ECoG) to localize epileptic brain regions. Despite their prevalence, the exact relationship between interictal spiking and the molecular pathways that drive the production and propagation of seizures is not known. We have recently identified a common group of genes induced in human epileptic foci, including EGR1, EGR2, c-fos, and MKP-3. We found that the expression levels of these genes correlate precisely with the frequency of interictal activity and can thus serve as markers of epileptic activity. Here, we explore this further by comparing the expression of these genes within human epileptic neocortex to both ictal and specific electrical parameters of interictal spiking from subdural recordings prior to surgical resection in order to determine the electrical properties of the human neocortex that correlate best to the expression of these genes. Seizure frequency as well as quantitative electrophysiological parameters of interictal spikes including frequency, amplitude, duration, and area were calculated at each electrode channel and compared to quantitative real-time RT-PCR measurements of four activity-dependent genes (c-fos, EGR1, EGR2, and MKP-3) in the underlying neocortical tissue. Local neocortical regions of seizure onset had consistently higher spike firing frequencies and higher spike amplitudes compared to nearby "control" cortex. In contrast, spike duration was not significantly different between these two areas. There was no relationship observed between seizure frequency and the expression levels of activity-dependent genes for the patients examined in this study. However, within each patient, there were highly significant correlations between the expression of three of these genes (c-fos, EGR1, EGR2) and the frequency, amplitude, and total area of the interictal spikes at individual electrodes. We conclude that interictal spiking is closely associated with the expression of a group of activity-dependent transcription factors in neocortical human epilepsy. Since there was little correlation between gene expression and seizure frequency, our results suggest that interictal spiking is a stronger driving force behind these activity-dependent gene changes and may thus participate in the development and maintenance of the abnormal neuronal hyperactivity seen in human epileptic neocortex.


Asunto(s)
Electroencefalografía/estadística & datos numéricos , Epilepsia/diagnóstico , Expresión Génica/genética , Neocórtex/fisiopatología , Adolescente , Mapeo Encefálico , Niño , Preescolar , Fosfatasa 6 de Especificidad Dual , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Electrodos Implantados , Epilepsia/genética , Epilepsia/fisiopatología , Femenino , Genes fos/genética , Genes fos/fisiología , Humanos , Lactante , Masculino , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Biochem Biophys Res Commun ; 350(2): 437-43, 2006 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-17011519

RESUMEN

alpha2-HS glycoprotein (AHSG), also known as fetuin-A, inhibits insulin receptor autophosphorylation and tyrosine kinase activity in vitro and in vivo. Earlier we have shown that fetuin-null (KO) mice demonstrate improved insulin sensitivity and resistance to diet-induced obesity. Since aging is associated with insulin resistance and impaired glucose handling, we tested the hypothesis that fetuin-null (KO) mice are resilient to changes in insulin sensitivity associated with aging. Aged (80-week-old) fetuin-null mice were leaner and demonstrated significantly lower body weights compared to age- and sex-matched wild-type (WT) littermates. Leanness in aged fetuin KO mice was accompanied by a significant increase in dark-onset energy expenditure, without marked alteration of respiratory quotient. In comparison to WT mice, fetuin KO mice demonstrated a lower fasting insulin resistance index, and significantly lower blood glucose and insulin levels, following a 4h fast. Interestingly, despite significantly decreased insulin levels during a glucose tolerance test, aged fetuin-null mice demonstrated a similar glucose excursion as WT mice, indicative of improved insulin sensitivity. Analysis of aldehyde-fuchsin stained pancreas from aged fetuin KO mice indicated no difference in islet beta-cell size or number. An insulin tolerance test confirmed the increased insulin sensitivity of aged fetuin KO mice. Further, compared to WT mice, aged fetuin-null mice demonstrated increased skeletal muscle and liver IR autophosphorylation and TK activity. Taken together, this study suggests that the absence of fetuin may contribute to the improvement of insulin sensitivity associated with aging.


Asunto(s)
Envejecimiento , Proteínas Sanguíneas/genética , Resistencia a la Insulina , Obesidad/etiología , Animales , Glucemia/análisis , Peso Corporal , Metabolismo Energético , Insulina/sangre , Masculino , Ratones , Ratones Noqueados , Fosforilación , Receptor de Insulina/metabolismo , alfa-2-Glicoproteína-HS
17.
Ann Neurol ; 58(5): 736-47, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16240350

RESUMEN

Epilepsy is a disease of recurrent seizures that can develop after a wide range of brain insults. Although surgical resection of focal regions of seizure onset can result in clinical improvement, the molecular mechanisms that produce and maintain focal hyperexcitability are not understood. Here, we demonstrate a regional, persistent induction of a common group of genes in human epileptic neocortex in 17 patients with neocortical epilepsy, regardless of the underlying pathology. This relatively small group of common genes, identified using complementary DNA microarrays and confirmed with quantitative reverse transcription polymerase chain reaction and immunostaining, include the immediate early gene transcription factors EGR-1, EGR-2, and c-fos, with roles in learning and memory, and signaling genes such as the dual-specificity kinase/phosphatase MKP-3. Maximal expression of these genes was observed in neurons in neocortical layers II through IV. These neurons also showed persistent cyclic adenosine monophosphate response element binding protein (CREB) activation and nuclear translocation of EGR-2 and c-fos proteins. In two patients, local interictal epileptiform discharge frequencies correlated precisely with the expression of these genes, suggesting that these genes either are directly modulated by the degree of epileptic activity or help sustain ongoing epileptic activity. The identification of a common set of genes and the persistent activation of CREB signaling in human epileptic foci provide a clinically relevant set of biological markers with potential importance for developing future diagnostic and therapeutic options in human epilepsy.


Asunto(s)
Epilepsia/fisiopatología , Expresión Génica/fisiología , Neocórtex/fisiopatología , Adolescente , Mapeo Encefálico , Niño , Preescolar , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Electroencefalografía/métodos , Epilepsia/genética , Epilepsia/patología , Femenino , Genes Inmediatos-Precoces/fisiología , Humanos , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Indoles , Lactante , Masculino , Neocórtex/metabolismo , Neocórtex/patología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Probabilidad , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA