Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Infect Dis ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864524

RESUMEN

BACKGROUND: The in vitro cultivation of human noroviruses allows a comparison of antibody levels measured in neutralization and histoblood group antigen (HBGA)-blocking assays. METHODS: Serum samples collected during the evaluation of an investigational norovirus vaccine (HIL-214 [formerly TAK-214]) were assayed for neutralizing antibody levels against the vaccine's prototype Norwalk virus/GI.1 (P1) virus strain. Results were compared to those previously determined using HBGA-blocking assays. RESULTS: Neutralizing antibody seroresponses were observed in 83% of 24 vaccinated adults, and antibody levels were highly correlated (r=0.81, P<0.001) with those measured by HBGA-blocking. CONCLUSIONS: GI.1-specific HBGA-blocking antibodies are a surrogate for neutralization of GI.1 norovirus.

2.
Pediatr Res ; 95(6): 1564-1571, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228744

RESUMEN

BACKGROUND: In very low birth weight (VLBW) infants, human milk cream added to standard human milk fortification is used to improve growth. This study aimed to evaluate the impact of cream supplement on the intestinal microbiome of VLBW infants. METHODS: Whole genome shotgun sequencing was performed on stool (n = 57) collected from a cohort of 23 infants weighing 500-1250 grams (control = 12, cream = 11). Both groups received an exclusive human milk diet (mother's own milk, donor human milk, and donor human milk-derived fortifier) with the cream group receiving an additional 2 kcal/oz cream at 100 mL/kg/day of fortified feeds and then 4 kcal/oz if poor growth. RESULTS: While there were no significant differences in alpha diversity, infants receiving cream significantly differed from infants in the control group in beta diversity. Cream group samples had significantly higher prevalence of Proteobacteria and significantly lower Firmicutes compared to control group. Klebsiella species dominated the microbiota of cream-exposed infants, along with bacterial pathways involved in lipid metabolism and metabolism of cofactors and amino acids. CONCLUSIONS: Cream supplementation significantly altered composition of the intestinal microbiome of VLBW infants to favor increased prevalence of Proteobacteria and functional gene content associated with these bacteria. IMPACT: We report changes to the intestinal microbiome associated with administration of human milk cream; a novel supplement used to improve growth rates of preterm very low birth weight infants. Since little is known about the impact of cream on intestinal microbiota composition of very low birth weight infants, our study provides valuable insight on the effects of diet on the microbiome of this population. Dietary supplements administered to preterm infants in neonatal intensive care units have the potential to influence the intestinal microbiome composition which may affect overall health status of the infant.


Asunto(s)
Microbioma Gastrointestinal , Recien Nacido Prematuro , Recién Nacido de muy Bajo Peso , Leche Humana , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Recién Nacido , Estudios Prospectivos , Femenino , Masculino , Alimentos Fortificados , Heces/microbiología , Proteobacteria , Suplementos Dietéticos , Fenómenos Fisiológicos Nutricionales del Lactante
3.
J Infect Dis ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37781879

RESUMEN

A GII.2 outbreak in an efficacy study of a bivalent virus-like particle (VLP) norovirus vaccine, TAK-214, in healthy US adults provided an opportunity to examine GII.4 homotypic vs. GII.2 heterotypic responses to vaccination and infection. Three serological assays (VLP-binding, histoblood group antigen-blocking, and neutralizing) were performed for each genotype. Results were highly correlated within a genotype but not between genotypes. Although the vaccine provided protection from GII.2-associated disease, little GII.2-specific neutralization occurred after vaccination. Choice of antibody assay can affect assessments of human norovirus vaccine immunogenicity.

4.
J Infect Dis ; 228(Suppl 5): S337-S354, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37669225

RESUMEN

The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.


Asunto(s)
Antivirales , Descubrimiento de Drogas , Antivirales/farmacología , Antivirales/uso terapéutico , Bioensayo
5.
Antimicrob Agents Chemother ; 67(10): e0063623, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37787556

RESUMEN

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within 3 days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation. Treatment for chronic HuNoV infection in immunosuppressed patients anecdotally includes nitazoxanide, a broad-spectrum antimicrobial licensed for treatment of parasite-induced gastroenteritis. Despite its off-label use for chronic HuNoV infection, nitazoxanide has not been clearly demonstrated to be an effective treatment. In this study, we standardized a pipeline for antiviral testing using multiple human small intestinal enteroid lines representing different intestinal segments and evaluated whether nitazoxanide inhibits replication of five HuNoV strains in vitro. Nitazoxanide did not exhibit high selective antiviral activity against any HuNoV strain tested, indicating it is not an effective antiviral for HuNoV infection. Human intestinal enteroids are further demonstrated as a model to serve as a preclinical platform to test antivirals against HuNoVs to treat gastrointestinal disease. Abstr.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Humanos , Gastroenteritis/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Estándares de Referencia , Infecciones por Caliciviridae/tratamiento farmacológico , Replicación Viral
6.
Proc Natl Acad Sci U S A ; 117(38): 23782-23793, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32907944

RESUMEN

Human noroviruses (HuNoVs) are the leading cause of viral gastroenteritis worldwide; yet currently, no vaccines or FDA-approved antiviral drugs are available to counter these pathogens. To understand HuNoV biology and the epithelial response to infection, we performed transcriptomic analyses, RT-qPCR, CRISPR-Cas9 modification of human intestinal enteroid (HIE) cultures, and functional studies with two virus strains (a pandemic GII.4 and a bile acid-dependent GII.3 strain). We identified a predominant type III interferon (IFN)-mediated innate response to HuNoV infection. Replication of both strains is sensitive to exogenous addition of IFNs, suggesting the potential of IFNs as therapeutics. To obtain insight into IFN pathway genes that play a role in the antiviral response to HuNoVs, we developed knockout (KO) HIE lines for IFN alpha and lambda receptors and the signaling molecules, MAVS, STAT1, and STAT2 An unexpected differential response of enhanced replication and virus spread was observed for GII.3, but not the globally dominant GII.4 HuNoV in STAT1-knockout HIEs compared to parental HIEs. These results indicate cellular IFN responses restrict GII.3 but not GII.4 replication. The strain-specific sensitivities of innate responses against HuNoV replication provide one explanation for why GII.4 infections are more widespread and highlight strain specificity as an important factor in HuNoV biology. Genetically modified HIEs for innate immune genes are useful tools for studying immune responses to viral or microbial pathogens.


Asunto(s)
Infecciones por Caliciviridae , Interacciones Huésped-Patógeno/inmunología , Interferones , Intestinos , Norovirus , Sistemas CRISPR-Cas , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Humanos , Interferones/genética , Interferones/metabolismo , Intestinos/inmunología , Intestinos/virología , Modelos Biológicos , Norovirus/genética , Norovirus/inmunología , Norovirus/patogenicidad , Organoides/inmunología , Organoides/virología , Análisis de Secuencia de ARN , Transcriptoma/genética , Replicación Viral
7.
Proc Natl Acad Sci U S A ; 117(3): 1700-1710, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31896578

RESUMEN

Human noroviruses (HuNoVs) cause sporadic and epidemic outbreaks of gastroenteritis in all age groups worldwide. We previously reported that stem cell-derived human intestinal enteroid (HIE) cultures support replication of multiple HuNoV strains and that some strains (e.g., GII.3) replicate only in the presence of bile. Heat- and trypsin-treatment of bile did not reduce GII.3 replication, indicating a nonproteinaceous component in bile functions as an active factor. Here we show that bile acids (BAs) are critical for GII.3 replication and replication correlates with BA hydrophobicity. Using the highly effective BA, glycochenodeoxycholic acid (GCDCA), we show BAs act during the early stage of infection, BA-dependent replication in HIEs is not mediated by detergent effects or classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling but involves another G protein-coupled receptor, sphingosine-1-phosphate receptor 2, and BA treatment of HIEs increases particle uptake. We also demonstrate that GCDCA induces multiple cellular responses that promote GII.3 replication in HIEs, including enhancement of 1) endosomal uptake, 2) endosomal acidification and subsequent activity of endosomal/lysosomal enzyme acid sphingomyelinase (ASM), and 3) ceramide levels on the apical membrane. Inhibitors of endosomal acidification or ASM reduce GII.3 infection and exogenous addition of ceramide alone permits infection. Furthermore, inhibition of lysosomal exocytosis of ASM, which is required for ceramide production at the apical surface, decreases GII.3 infection. Together, our results support a model where GII.3 exploits rapid BA-mediated cellular endolysosomal dynamic changes and cellular ceramide to enter and replicate in jejunal HIEs.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Ceramidas/metabolismo , Intestinos/virología , Norovirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Ácidos y Sales Biliares/farmacología , Ceramidas/farmacología , Ácido Glicoquenodesoxicólico , Humanos , Receptores Acoplados a Proteínas G , Esfingomielina Fosfodiesterasa/metabolismo , Receptores de Esfingosina-1-Fosfato
8.
Physiol Genomics ; 53(11): 486-508, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612061

RESUMEN

Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Colon/metabolismo , Medios de Cultivo/farmacología , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Organoides/metabolismo , Transcriptoma/efectos de los fármacos , Calcitriol/farmacología , Colágeno/metabolismo , Colágeno/farmacología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Medios de Cultivo/química , Combinación de Medicamentos , Escherichia coli , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Laminina/metabolismo , Laminina/farmacología , Organoides/virología , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , RNA-Seq/métodos , Transcriptoma/genética , Virosis/metabolismo , Virosis/virología , Virus
9.
J Infect Dis ; 221(5): 739-743, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31613328

RESUMEN

BACKGROUND: The development of an in vitro cultivation system for human noroviruses allows the measurement of neutralizing antibody levels. METHODS: Serum neutralizing antibody levels were determined using a GII.4/Sydney/2012-like virus in human intestinal enteroids in samples collected before and 4 weeks after administration of an investigational norovirus vaccine and were compared with those measured in histo-blood group antigen (HBGA)-blocking assays. RESULTS: Neutralizing antibody seroresponses were observed in 71% of 24 vaccinated adults, and antibody levels were highly correlated (r = 0.82, P < .001) with those measured by HBGA blocking. CONCLUSIONS: HBGA-blocking antibodies are a surrogate for neutralization in human noroviruses. CLINICAL TRIALS REGISTRATION: NCT02475278.


Asunto(s)
Anticuerpos Bloqueadores/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos de Grupos Sanguíneos/inmunología , Infecciones por Caliciviridae/prevención & control , Norovirus/inmunología , Vacunación , Vacunas Virales/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/análisis , Infecciones por Caliciviridae/virología , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Adulto Joven
10.
BMC Infect Dis ; 20(1): 740, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33036575

RESUMEN

BACKGROUND: From 2016, the Government of India introduced the oral rotavirus vaccine into the national immunization schedule. Currently, two indigenously developed vaccines (ROTAVAC, Bharat Biotech; ROTASIIL, Serum Institute of India) are included in the Indian immunization program. We report the rotavirus disease burden and the diversity of rotavirus genotypes from 2005 to 2016 in a multi-centric surveillance study before the introduction of vaccines. METHODS: A total of 29,561 stool samples collected from 2005 to 2016 (7 sites during 2005-2009, 3 sites from 2009 to 2012, and 28 sites during 2012-2016) were included in the analysis. Stools were tested for rotavirus antigen using enzyme immunoassay (EIA). Genotyping was performed on 65.8% of the EIA positive samples using reverse transcription- polymerase chain reaction (RT-PCR) to identify the G (VP7) and P (VP4) types. Multinomial logistic regression was used to quantify the odds of detecting genotypes across the surveillance period and in particular age groups. RESULTS: Of the 29,561 samples tested, 10,959 (37.1%) were positive for rotavirus. There was a peak in rotavirus positivity during December to February across all sites. Of the 7215 genotyped samples, G1P[8] (38.7%) was the most common, followed by G2P[4] (12.3%), G9P[4] (5.8%), G12P[6] (4.2%), G9P[8] (4%), and G12P[8] (2.4%). Globally, G9P[4] and G12P[6] are less common genotypes, although these genotypes have been reported from India and few other countries. There was a variation in the geographic and temporal distribution of genotypes, and the emergence or re-emergence of new genotypes such as G3P[8] was seen. Over the surveillance period, there was a decline in the proportion of G2P[4], and an increase in the proportion of G9P[4]. A higher proportion of mixed and partially typed/untyped samples was also seen more in the age group 0-11 months. CONCLUSIONS: This 11 years surveillance highlights the high burden of severe rotavirus gastroenteritis in Indian children < 5 years of age before inclusion of rotavirus vaccines in the national programme. Regional variations in rotavirus epidemiology were seen, including the emergence of G3P[8] in the latter part of the surveillance. Having pre-introduction data is important to track changing epidemiology of rotaviruses, particularly following vaccine introduction.


Asunto(s)
Gastroenteritis/epidemiología , Genotipo , Hospitalización , Infecciones por Rotavirus/epidemiología , Rotavirus/genética , Enfermedad Aguda , Antígenos Virales/inmunología , Preescolar , Heces/virología , Femenino , Gastroenteritis/prevención & control , Gastroenteritis/virología , Técnicas de Genotipaje , Humanos , Programas de Inmunización , Esquemas de Inmunización , Técnicas para Inmunoenzimas , India/epidemiología , Lactante , Recién Nacido , Masculino , Prevalencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/inmunología
11.
Curr Opin Infect Dis ; 32(5): 445-452, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31335438

RESUMEN

PURPOSE OF REVIEW: Gastroenteritis results in substantial morbidity and mortality worldwide, especially in young children in low-and-middle-income settings. Rotavirus and norovirus are the leading causes of viral gastroenteritis. Although introduction of rotavirus vaccines into childhood immunization programmes has reduced disease burden, vaccine effectiveness remains low in developing countries. Norovirus is replacing rotavirus as the most common cause of diarrhea hospitalization in settings where rotavirus vaccines are highly effective. Genetically determined host factors, such as expression of histo blood group antigens (HBGAs) are hypothesized to play key roles in susceptibility to infections and gastroenteritis caused by these virus, as well as influence vaccine take. RECENT FINDINGS: Epidemiology studies provide strong support for virus genotype-dependent effects of host HBGA expression, specifically secretor status on susceptibility to rotavirus and norovirus. Secretor-positive persons are significantly more susceptible to gastroenteritis caused by rotavirus P[8] genotype, and to infection with the GII.4 genotype of human norovirus. There is increasing data on the role of secretor status on rotavirus vaccine take but results are currently conflicting. For analyses involving young infants, maternal HBGA status is an important factor to be considered in future studies. SUMMARY: Genetically determined HBGA expression influences susceptibility to enteric viruses of public health importance.


Asunto(s)
Antígenos de Grupos Sanguíneos/biosíntesis , Infecciones por Caliciviridae/epidemiología , Susceptibilidad a Enfermedades , Gastroenteritis/epidemiología , Infecciones por Rotavirus/epidemiología , Infecciones por Caliciviridae/inmunología , Gastroenteritis/inmunología , Gastroenteritis/virología , Expresión Génica , Humanos , Infecciones por Rotavirus/inmunología
12.
J Pediatr ; 204: 298-300.e1, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30297290

RESUMEN

Rotavirus G8P[8] infection has been common in Africa, but rare in the Americas. Among 23 rotavirus episodes observed during 18 months of surveillance of 100 families in Chile, 11 (48%) were identified as G8P[8]. Genotypes from these strains shared >99% identity with rotavirus sequences described in Asia, and may be misclassified as mixed G8/G12.


Asunto(s)
Antígenos Virales/genética , Diarrea/virología , Infecciones por Rotavirus/virología , Rotavirus/genética , Chile/epidemiología , Heces/virología , Genotipo , Humanos , Lactante , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Infecciones por Rotavirus/epidemiología , Vacunas contra Rotavirus
13.
Curr Opin Infect Dis ; 31(5): 422-432, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30102614

RESUMEN

PURPOSE OF REVIEW: Noroviruses are a major cause of gastroenteritis. This review summarizes new information on noroviruses that may lead to the development of improved measures for limiting their human health impact. RECENT FINDINGS: GII.4 strains remain the most common human noroviruses causing disease, although GII.2 and GII.17 strains have recently emerged as dominant strains in some populations. Histo-blood group antigen (HBGA) expression on the gut mucosa drives susceptibility to different norovirus strains. Antibodies that block virus binding to these glycans correlate with protection from infection and illness. Immunocompromised patients are significantly impacted by norovirus infection, and the increasing availability of molecular diagnostics has improved infection recognition. Human noroviruses can be propagated in human intestinal enteroid cultures containing enterocytes that are a significant primary target for initiating infection. Strain-specific requirements for replication exist with bile being essential for some strains. Several vaccine candidates are progressing through preclinical and clinical development and studies of potential antiviral interventions are underway. SUMMARY: Norovirus epidemiology is complex and requires continued surveillance to track the emergence of new strains and recombinants, especially with the continued progress in vaccine development. Humans are the best model to study disease pathogenesis and prevention. New in-vitro cultivation methods should lead to better approaches for understanding virus-host interactions and ultimately to improved strategies for mitigation of human norovirus-associated disease.


Asunto(s)
Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Gastroenteritis/epidemiología , Gastroenteritis/virología , Genotipo , Norovirus/clasificación , Norovirus/genética , Anticuerpos Antivirales/inmunología , Antígenos de Grupos Sanguíneos/metabolismo , Infecciones por Caliciviridae/prevención & control , Descubrimiento de Drogas/tendencias , Gastroenteritis/prevención & control , Antígenos de Histocompatibilidad/metabolismo , Interacciones Huésped-Patógeno , Humanos , Norovirus/inmunología , Norovirus/aislamiento & purificación , Receptores Virales/metabolismo , Vacunas Virales/inmunología , Vacunas Virales/aislamiento & purificación , Acoplamiento Viral , Replicación Viral
14.
J Nutr ; 147(9): 1709-1714, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28637685

RESUMEN

Background: Oligosaccharides in milk act as soluble decoy receptors and prevent pathogen adhesion to the infant gut. Milk oligosaccharides reduce infectivity of a porcine rotavirus strain; however, the effects on human rotaviruses are less well understood.Objective: In this study, we determined the effect of specific and abundant milk oligosaccharides on the infectivity of 2 globally dominant human rotavirus strains.Methods: Four milk oligosaccharides-2'-fucosyllactose (2'FL), 3'-sialyllactose (3'SL), 6'-sialyllactose (6'SL), and galacto-oligosaccharides-were tested for their effects on the infectivity of human rotaviruses G1P[8] and G2P[4] through fluorescent focus assays on African green monkey kidney epithelial cells (MA104 cells). Oligosaccharides were added at different time points in the infectivity assays. Infections in the absence of oligosaccharides served as controls.Results: When compared with infections in the absence of glycans, all oligosaccharides substantially reduced the infectivity of both human rotavirus strains in vitro; however, virus strain-specific differences in effects were observed. Compared with control infections, the maximum reduction in G1P[8] infectivity was seen with 2'FL when added after the onset of infection (62% reduction, P < 0.01), whereas the maximum reduction in G2P[4] infectivity was seen with the mixture of 3'SL + 6'SL when added during infection (73% reduction, P < 0.01). The mixture of 3'SL + 6'SL at the same ratio as is present in breast milk was more potent in reducing G2P[4] infectivity (73% reduction, P < 0.01) than when compared with 3'SL (47% reduction) or 6'SL (40% reduction) individually. For all oligosaccharides the reduction in infectivity was mediated by an effect on the virus and not on the cells.Conclusions: Milk oligosaccharides reduce the infectivity of human rotaviruses in MA104 cells, primarily through an effect on the virus. Although breastfed infants are directly protected, the addition of specific oligosaccharides to infant formula may confer these benefits to formula-fed infants.


Asunto(s)
Leche/química , Oligosacáridos/uso terapéutico , Infecciones por Rotavirus/prevención & control , Rotavirus/efectos de los fármacos , Animales , Línea Celular , Chlorocebus aethiops , Humanos , Leche Humana/química , Oligosacáridos/farmacología , Rotavirus/clasificación , Rotavirus/patogenicidad , Infecciones por Rotavirus/virología , Especificidad de la Especie
17.
Mol Cell Proteomics ; 13(11): 2961-74, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25048706

RESUMEN

We have shown that recombinant forms of VP8* domains of the human rotavirus outer capsid spike protein VP4 from human neonatal strains (N155(G10P[11]) and RV3(G3P[6]) and a bovine strain (B223) recognize unique glycans within the repertoire of human milk glycans. The accompanying study by Yu et al.(2), describes a human milk glycan shotgun glycan microarray that led to the identification of 32 specific glycans in the human milk tagged glycan library that were recognized by these human rotaviruses. These microarray analyses also provided a variety of metadata about the recognized glycan structures compiled from anti-glycan antibody and lectin binding before and after specific glycosidase digestions, along with compositional information from mass analysis by matrix-assisted laser desorption ionization-mass spectrometry. To deduce glycan sequence and utilize information predicted by analyses of metadata from each glycan, 28 of the glycan targets were retrieved from the tagged glycan library for detailed sequencing using sequential disassembly of glycans by ion-trap mass spectrometry. Our aim is to obtain a deeper structural understanding of these key glycans using an orthogonal approach for structural confirmation in a single ion trap mass spectrometer. This sequential ion disassembly strategy details the complexities of linkage and branching in multiple compositions, several of which contained isomeric mixtures including several novel structures. The application of this approach exploits both library matching with standard materials and de novo approaches. This combination together with the metadata generated from lectin and antibody-binding data before and after glycosidase digestions provide a heretofore-unavailable level of analytical detail to glycan structure analysis. The results of these studies showed that, among the 28 glycan targets analyzed, 27 unique structures were identified, and 23 of the human milk glycans recognized by human rotaviruses represent novel structures not previously described as glycans in human milk. The functional glycomics analysis of human milk glycans provides significant insight into the repertoire of glycans comprising the human milk metaglycome.


Asunto(s)
Proteínas de la Cápside/metabolismo , Leche Humana/metabolismo , Polisacáridos/metabolismo , Polisacáridos/ultraestructura , Proteínas de Unión al ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas de la Cápside/genética , Secuencia de Carbohidratos , Glicómica , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Receptores Virales/metabolismo , Rotavirus/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Coloración y Etiquetado , Proteínas no Estructurales Virales/genética
18.
Mol Cell Proteomics ; 13(11): 2944-60, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25048705

RESUMEN

Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MS(n) analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MS(n) are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures.


Asunto(s)
Leche Humana/química , Polisacáridos/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores Virales/metabolismo , Rotavirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Glicómica , Humanos , Ácido N-Acetilneuramínico/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Coloración y Etiquetado , Proteínas no Estructurales Virales/genética
19.
J Infect Dis ; 212(3): 397-405, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25635121

RESUMEN

BACKGROUND: Noroviruses are a leading cause of acute gastroenteritis worldwide. Mucosal and cellular immune responses remain poorly understood, with most studies of noroviruses having focused on serological responses to infection. METHODS: We used saliva, feces, and peripheral blood mononuclear cells collected from persons who were administered Norwalk virus (NV) to characterize mucosal (salivary and fecal immunoglobulin A [IgA]) and cellular (NV-specific IgA and immunoglobulin G [IgG] antibody-secreting cells and total and NV-specific IgA and IgG memory B cells) immune responses following infection. RESULTS: Prechallenge levels of NV-specific salivary IgA and NV-specific memory IgG cells correlated with protection from gastroenteritis, whereas prechallenge levels of NV-specific fecal IgA correlated with a reduced viral load. Antibody-secreting cell responses were biased toward IgA, while memory B-cell responses were biased toward IgG. NV-specific memory B cells but not antibody-secreting cells persisted 180 days after infection. CONCLUSIONS: NV-specific salivary IgA and NV-specific memory IgG cells were identified as new correlates of protection against NV gastroenteritis. Understanding the relative importance of mucosal, cellular, and humoral immunity is important in developing vaccine strategies for norovirus disease prevention.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/inmunología , Gastroenteritis/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Virus Norwalk/inmunología , Adulto , Anticuerpos Antivirales/sangre , Infecciones por Caliciviridae/virología , Heces/química , Gastroenteritis/virología , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Leucocitos Mononucleares/inmunología , Saliva/química
20.
J Virol ; 88(16): 9060-71, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24899175

RESUMEN

UNLABELLED: Rotaviruses (RVs) are leading causes of severe diarrhea and vomiting in infants and young children. RVs with G10P[11] genotype specificity have been associated with symptomatic and asymptomatic neonatal infections in Vellore, India. To identify possible viral genetic determinants responsible for differences in symptomology, the genome sequences of G10P[11] RVs in stool samples of 19 neonates with symptomatic infections and 20 neonates with asymptomatic infections were determined by Sanger and next-generation sequencing. The data showed that all 39 viruses had identical genotype constellations (G10-P[11]-I2-R2-C2-M2-A1-N1-T1-E2-H3), the same as those of the previously characterized symptomatic N155 Vellore isolate. The data also showed that the RNA and deduced protein sequences of all the Vellore G10P[11] viruses were nearly identical; no nucleotide or amino acid differences were found that correlated with symptomatic versus asymptomatic infection. Next-generation sequencing data revealed that some stool samples, both from neonates with symptomatic infections and from neonates with asymptomatic infections, also contained one or more positive-strand RNA viruses (Aichi virus, astrovirus, or salivirus/klassevirus) suspected of being potential causes of pediatric gastroenteritis. However, none of the positive-strand RNA viruses could be causally associated with the development of symptoms. These results indicate that the diversity of clinical symptoms in Vellore neonates does not result from genetic differences among G10P[11] RVs; instead, other undefined factors appear to influence whether neonates develop gastrointestinal disease symptoms. IMPORTANCE: Rotavirus (RV) strains have been identified that preferentially replicate in neonates, in some cases, without causing gastrointestinal disease. Surveillance studies have established that G10P[11] RVs are a major cause of neonatal infection in Vellore, India, with half of infected neonates exhibiting symptoms. We used Sanger and next-generation sequencing technologies to contrast G10P[11] RVs recovered from symptomatic and asymptomatic neonates. Remarkably, the data showed that the RNA genomes of the viruses were virtually indistinguishable and lacked any differences that could explain the diversity of clinical outcomes among infected Vellore neonates. The sequencing results also indicated that some symptomatic and some asymptomatic Vellore neonates were infected with other enteric viruses (Aichi virus, astrovirus, salvirus/klassevirus); however, none could be correlated with the presence of symptoms in neonates. Together, our findings suggest that other poorly defined factors, not connected to the genetic makeup of the Vellore G10P[11] viruses, influence whether neonates develop gastrointestinal disease symptoms.


Asunto(s)
Diarrea/virología , Infecciones por Rotavirus/virología , Rotavirus/genética , Heces/virología , Gastroenteritis/virología , Genotipo , Humanos , India , Recién Nacido , Kobuvirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA