Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Immunol ; 189(6): 2833-42, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22904309

RESUMEN

Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by "normal" cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56+ and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.


Asunto(s)
Exosomas/inmunología , Exosomas/metabolismo , Células Asesinas Activadas por Linfocinas/inmunología , Células Asesinas Activadas por Linfocinas/metabolismo , Monitorización Inmunológica , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Subgrupos de Linfocitos B/patología , Linfoma de Burkitt/inmunología , Linfoma de Burkitt/patología , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/patología , Técnicas de Cocultivo , Exosomas/ultraestructura , Proteína Ligando Fas/biosíntesis , Humanos , Inmunofenotipificación , Células Jurkat , Células K562 , Células Asesinas Activadas por Linfocinas/ultraestructura , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Monitorización Inmunológica/métodos , Perforina/biosíntesis
2.
Breast Cancer Res ; 14(2): R50, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22429397

RESUMEN

INTRODUCTION: Acquisition of mesenchymal characteristics confers to breast cancer (BC) cells the capability of invading tissues different from primary tumor site, allowing cell migration and metastasis. Regulators of the mesenchymal-epithelial transition (MET) may represent targets for anticancer agents. Accruing evidence supports functional implications of choline phospholipid metabolism in oncogene-activated cell signaling and differentiation. We investigated the effects of D609, a xanthate inhibiting phosphatidylcholine-specific phospholipase C (PC-PLC) and sphingomyelin synthase (SMS), as a candidate regulator of cell differentiation and MET in the highly metastatic BC cell line MDA-MB-231. METHODS: PC-PLC expression and activity were investigated using confocal laser scanning microscopy (CLSM), immunoblotting and enzymatic assay on human MDA-MB-231 compared with MCF-7 and SKBr3 BC cells and a nontumoral immortalized counterpart (MCF-10A). The effects of D609 on PC-PLC and SMS activity, loss of mesenchymal markers and changes in migration and invasion potential were monitored in MDA-MB-231 cells by enzymatic assays, CLSM, immunoblotting and transwell chamber invasion combined with scanning electron microscopy examinations. Cell proliferation, formation and composition of lipid bodies and cell morphology were investigated in D609-treated BC cells by cell count, CLSM, flow-cytometry of BODIPY-stained cells, nuclear magnetic resonance and thin-layer chromatography. RESULTS: PC-PLC (but not phospholipase D) showed 2- to 6-fold activation in BC compared with nontumoral cells, the highest activity (up to 0.4 pmol/µg protein/min) being detected in the poorly-differentiated MDA-MB-231 cells. Exposure of the latter cells to D609 (50 µg/mL, 24-72 h) resulted into 60-80% PC-PLC inhibition, while SMS was transiently inhibited by a maximum of 21%. These features were associated with progressive decreases of mesenchymal traits such as vimentin and N-cadherin expression, reduced galectin-3 and milk fat globule EGF-factor 8 levels, ß-casein formation and decreased in vitro cell migration and invasion. Moreover, proliferation arrest, changes in cell morphology and formation of cytosolic lipid bodies typical of cell differentiation were induced by D609 in all investigated BC cells. CONCLUSIONS: These results support a critical involvement of PC-PLC in controlling molecular pathways responsible for maintaining a mesenchymal-like phenotype in metastatic BC cells and suggests PC-PLC deactivation as a means to promote BC cell differentiation and possibly enhance the effectiveness of antitumor treatments.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Hidrocarburos Aromáticos con Puentes/farmacología , Inhibidores Enzimáticos/farmacología , Tionas/farmacología , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo , Antígenos CD/metabolismo , Antígenos de Superficie/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Cadherinas/metabolismo , Caseínas/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Citoplasma/ultraestructura , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Galectina 3/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Mesodermo/citología , Mesodermo/metabolismo , Proteínas de la Leche/metabolismo , Norbornanos , Fosfolipasa D/metabolismo , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Tiocarbamatos , Vimentina/metabolismo
3.
Blood ; 115(8): 1554-63, 2010 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-20009034

RESUMEN

The identification of molecules responsible for apoptotic cell (AC) uptake by dendritic cells (DCs) and induction of T-cell immunity against AC-associated antigens is a challenge in immunology. DCs differentiated in the presence of interferon-alpha (IFN-alpha-conditioned DCs) exhibit a marked phagocytic activity and a special attitude in inducing CD8(+) T-cell response. In this study, we found marked overexpression of the scavenger receptor oxidized low-density lipoprotein receptor 1 (LOX-1) in IFN-alpha-conditioned DCs, which was associated with increased levels of genes belonging to immune response families and high competence in inducing T-cell immunity against antigens derived from allogeneic apoptotic lymphocytes. In particular, the capture of ACs by IFN-alpha DCs led to a substantial subcellular rearrangement of major histocompatibility complex class I and class II molecules, along with enhanced cross-priming of autologous CD8(+) T cells and CD4(+) T-cell activation. Remarkably, AC uptake, CD8(+) T-cell cross-priming, and, to a lesser extent, priming of CD4(+) T lymphocytes were inhibited by a neutralizing antibody to the scavenger receptor LOX-1 protein. These results unravel a novel LOX-1-dependent pathway by which IFN-alpha can, under both physiologic and pathologic conditions, render DCs fully competent for presenting AC-associated antigens for cross-priming CD8(+) effector T cells, concomitantly with CD4(+) T helper cell activation.


Asunto(s)
Presentación de Antígeno/inmunología , Apoptosis/efectos de los fármacos , Células Dendríticas/inmunología , Factores Inmunológicos/farmacología , Interferón-alfa/farmacología , Receptores Depuradores de Clase E/inmunología , Transducción de Señal/efectos de los fármacos , Apoptosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Humanos , Inmunidad Celular/efectos de los fármacos , Factores Inmunológicos/inmunología , Interferón-alfa/inmunología , Activación de Linfocitos/efectos de los fármacos , Transducción de Señal/inmunología
4.
Breast Cancer Res ; 12(3): R27, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20462431

RESUMEN

INTRODUCTION: Overexpression on plasma membrane of human epidermal growth factor receptor 2 (HER2) is reported in 25% to 30% of breast cancers. Heterodimer formation with cognate members of the epidermal growth factor receptor (EGFR) family, such as HER3 and EGFR, activates abnormal cell-signalling cascades responsible for tumorigenesis and further transcriptional HER2 gene upregulation. Targeting the molecular mechanisms controlling HER2 overexpression and recycling may effectively deactivate this feedback-amplification loop. We recently showed that inactivation of phosphatidylcholine-specific phospholipase C (PC-PLC) may exert a pivotal role in selectively modulating the expression on the membrane of specific receptors or proteins relevant to cell function. In the present study, we investigated the capability of PC-PLC inhibition to target the molecular mechanisms controlling HER2 overexpression on the membrane of breast cancer cells by altering the rates of its endocytosis and lysosomal degradation. METHODS: Localization on the membrane and interaction of PC-PLC with HER2, EGFR, and HER3 were investigated on HER2-overexpressing and HER2-low breast cancer cell lines, by using confocal laser scanning microscopy, flow cytometry, cell-surface biotinylation, isolation of lipid rafts, and immunoprecipitation experiments. The effects of the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609) on HER2 expression on the membrane and on the levels of overall HER2, HER2-HER3, and HER2-EGFR contents were monitored in the HER2-overexpressing SKBr3 cells, after either transient or continuous receptor engagement with anti-HER2 monoclonal antibodies, including trastuzumab. Changes of HER2 expression and cell proliferation were examined in SKBr3, BT-474, and MDA-MB-453 cells continuously exposed to D609 alone or combined with trastuzumab. RESULTS: PC-PLC selectively accumulates on the plasma membrane of HER2-overexpressing cells, where it colocalizes and associates with HER2 in raft domains. PC-PLC inhibition resulted in enhanced HER2 internalization and lysosomal degradation, inducing downmodulation of HER2 expression on the membrane. Moreover, PC-PLC inhibition resulted in strong retardation of HER2 reexpression on the membrane and a decrease in the overall cellular contents of HER2, HER2-HER3, and HER2-EGFR heterodimers. The PC-PLC inhibitor also induced antiproliferative effects, especially in trastuzumab-resistant cells. CONCLUSIONS: The results pointed to PC-PLC inhibition as a potential means to counteract the tumorigenic effects of HER2 amplification and complement the effectiveness of current HER2-targeting therapies.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mama/metabolismo , Membrana Celular/metabolismo , Receptor ErbB-2/metabolismo , Fosfolipasas de Tipo C/antagonistas & inhibidores , Western Blotting , Neoplasias de la Mama/patología , Proliferación Celular , Células Cultivadas , Endocitosis , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Lisosomas/metabolismo , Receptor ErbB-3/metabolismo , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo
5.
J Mol Biol ; 371(5): 1174-87, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17610895

RESUMEN

The dystrophin-related and -associated protein dystrobrevin is a component of the dystrophin-associated protein complex, which directly links the cytoskeleton to the extracellular matrix. It is now thought that this complex also serves as a dynamic scaffold for signaling proteins, and dystrobrevin may play a role in this context. Since dystrobrevin involvement in signaling pathways seems to be dependent on its interaction with other proteins, we sought new insights and performed a two-hybrid screen of a mouse brain cDNA library using beta-dystrobrevin, the isoform expressed in non-muscle tissues, as bait. Among the positive clones characterized after the screen, one encodes the regulatory subunit RIalpha of the cAMP-dependent protein kinase A (PKA). We confirmed the interaction by in vitro and in vivo association assays, and mapped the binding site of beta-dystrobrevin on RIalpha to the amino-terminal region encompassing the dimerization/docking domain of PKA regulatory subunit. We also found that the domain of interaction for RIalpha is contained in the amino-terminal region of beta-dystrobrevin. We obtained evidence that beta-dystrobrevin also interacts directly with RIIbeta, and that not only beta-dystrobrevin but also alpha-dystrobrevin interacts with PKA regulatory subunits. We show that both alpha and beta-dystrobrevin are specific phosphorylation substrates for PKA and that protein phosphatase 2A (PP2A) is associated with dystrobrevins. Our results suggest a new role for dystrobrevin as a scaffold protein that may play a role in different cellular processes involving PKA signaling.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Asociadas a la Distrofina/química , Proteínas Asociadas a la Distrofina/fisiología , Animales , Sitios de Unión , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico , Matriz Extracelular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
6.
Clin Cancer Res ; 13(2 Pt 1): 644-53, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17255288

RESUMEN

PURPOSE: Immunotherapy is a promising antitumor strategy, which can be successfully combined with current anticancer treatments, as suggested by recent studies showing the paradoxical chemotherapy-induced enhancement of the immune response. The purpose of the present work is to dissect the biological events induced by chemotherapy that cooperate with immunotherapy in the success of the combined treatment against cancer. In particular, we focused on the following: (a) cyclophosphamide-induced modulation of several cytokines, (b) homeostatic proliferation of adoptively transferred lymphocytes, and (c) homing of transferred lymphocytes to secondary lymphoid organs and tumor mass. EXPERIMENTAL DESIGN: Here, we used the adoptive transfer of tumor-immune cells after cyclophosphamide treatment of tumor-bearing mice as a model to elucidate the mechanisms by which cyclophosphamide can render the immune lymphocytes competent to induce tumor rejection. RESULTS: The transfer of antitumor immunity was found to be dependent on CD4(+) T cells and on the cooperation of adoptively transferred cells with the host immune system. Of note, tumor-immune lymphocytes migrated specifically to the tumor only in mice pretreated with cyclophosphamide. Cyclophosphamide treatment also promoted homeostatic proliferation/activation of transferred B and T lymphocytes. Optimal therapeutic responses to the transfer of immune cells were associated with the cyclophosphamide-mediated induction of a "cytokine storm" [including granulocyte macrophage colony-stimulating factor, interleukin (IL)-1beta, IL-7, IL-15, IL-2, IL-21, and IFN-gamma], occurring during the "rebound phase" after drug-induced lymphodepletion. CONCLUSIONS: The ensemble of these data provides a new rationale for combining immunotherapy and chemotherapy to induce an effective antitumor response in cancer patients.


Asunto(s)
Antineoplásicos/farmacología , Linfocitos B/metabolismo , Ciclofosfamida/farmacología , Citocinas/metabolismo , Linfocitos T/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Sistema Inmunológico , Inmunoterapia/métodos , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Trasplante de Neoplasias
7.
Cancer Res ; 65(20): 9369-76, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16230400

RESUMEN

Recent characterization of abnormal phosphatidylcholine metabolism in tumor cells by nuclear magnetic resonance (NMR) has identified novel fingerprints of tumor progression that are potentially useful as clinical diagnostic indicators. In the present study, we analyzed the concentrations of phosphatidylcholine metabolites, activities of phosphocholine-producing enzymes, and uptake of [methyl-14C]choline in human epithelial ovarian carcinoma cell lines (EOC) compared with normal or immortalized ovary epithelial cells (EONT). Quantification of phosphatidylcholine metabolites contributing to the 1H NMR total choline resonance (3.20-3.24 ppm) revealed intracellular [phosphocholine] and [total choline] of 2.3 +/- 0.9 and 5.2 +/- 2.4 nmol/10(6) cells, respectively, with a glycerophosphocholine/phosphocholine ratio of 0.95 +/- 0.93 in EONT cells; average [phosphocholine] was 3- to 8-fold higher in EOC cells (P < 0.0001), becoming the predominant phosphatidylcholine metabolite, whereas average glycerophosphocholine/phosphocholine values decreased significantly to < or =0.2. Two-dimensional (phosphocholine/total choline, [total choline]) and (glycerophosphocholine/total choline, [total choline]) maps allowed separate clustering of EOC from EONT cells (P < 0.0001, 95% confidence limits). Rates of choline kinase activity in EOC cells were 12- to 24-fold higher (P < 0.03) than those in EONT cells (basal rate, 0.5 +/- 0.1 nmol/10(6) cells/h), accounting for a consistently elevated (5- to 15-fold) [methyl-14C]choline uptake after 1-hour incubation (P < 0.0001). The overall activity of phosphatidylcholine-specific phospholipase C and phospholipase D was also higher ( approximately 5-fold) in EOC cells, suggesting that both biosynthetic and catabolic pathways of the phosphatidylcholine cycle likely contribute to phosphocholine accumulation. Evidence of abnormal phosphatidylcholine metabolism might have implications in EOC biology and might provide an avenue to the development of noninvasive clinical tools for EOC diagnosis and treatment follow-up.


Asunto(s)
Neoplasias Ováricas/metabolismo , Fosfatidilcolinas/metabolismo , Fosforilcolina/metabolismo , Radioisótopos de Carbono , Línea Celular Tumoral , Colina/metabolismo , Colina/farmacocinética , Colina Quinasa/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Resonancia Magnética Nuclear Biomolecular , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Fosfolipasa D/metabolismo , Fosfolipasas de Tipo C/metabolismo
8.
Oncotarget ; 8(33): 55022-55038, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903399

RESUMEN

Antagonizing the oncogenic effects of human epidermal growth factor receptor 2 (HER2) with current anti-HER2 agents has not yet yielded major progress in the treatment of advanced HER2-positive epithelial ovarian cancer (EOC). Using preclinical models to explore alternative molecular mechanisms affecting HER2 overexpression and oncogenicity may lead to new strategies for EOC patient treatment. We previously reported that phosphatidylcholine-specific phospholipase C (PC-PLC) exerts a pivotal role in regulating HER2 overexpression in breast cancer cells. The present study, conducted on two human HER2-overexpressing EOC cell lines - SKOV3 and its in vivo-passaged SKOV3.ip cell variant characterized by enhanced in vivo tumorigenicity - and on SKOV3.ip xenografts implanted in SCID mice, showed: a) about 2-fold higher PC-PLC and HER2 protein expression levels in SKOV3.ip compared to SKOV3 cells; b) physical association of PC-PLC with HER2 in non-raft domains; c) HER2 internalization and ca. 50% reduction of HER2 mRNA and protein expression levels in SKOV3.ip cells exposed to the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609); d) differential effects of D609 and trastuzumab on HER2 protein expression and cell proliferation; e) decreased in vivo tumor growth in SKOV3.ip xenografts during in vivo treatment with D609; f) potential use of in vivo magnetic resonance spectroscopy (MRS) and imaging (MRI) parameters as biomarkers of EOC response to PC-PLC inhibition. Overall, these findings support the view that PC-PLC inhibition may represent an effective means to target the tumorigenic effects of HER2 overexpression in EOC and that in vivo MR approaches can efficiently monitor its effects.

9.
J Leukoc Biol ; 78(3): 686-95, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15951352

RESUMEN

We investigated the effect of interleukin (IL)-2, a T cell growth factor capable of activating certain macrophage functions, on interferon (IFN)-gamma expression in resting mouse peritoneal macrophages (PM). IL-2 addition to PM from different mouse strains up-modulated IFN-gamma mRNA and protein secretion. It is notable that endogenous type I and II IFNs did not play any role in the IL-2-mediated effect, as comparable levels of secreted IFN-gamma were observed upon IL-2 stimulation of PM from deficient mice. In contrast, endogenous IFN-gamma was requested for the IL-12-induced IFN-gamma production. It is interesting that blocking of each component of the IL-2 receptor (IL-2R) by neutralizing antibodies almost completely abolished IL-2-induced IFN-gamma production, suggesting that all IL-2R chains contribute to the PM biological response to IL-2. The simultaneous treatment of PM with IL-2 and IL-12 resulted in a higher IFN-gamma secretion with respect to that obtained upon treatment with IL-2 or IL-12 alone. It is notable that IFN-gamma protein was expressed intracellularly in the majority of cells exhibiting a macrophage phenotype (i.e., F4/80+) and was secreted upon IL-2 stimulation. Overall, these findings demonstrate that IL-2 regulates at different levels IFN-gamma expression in macrophages, highlighting the crucial role of these cells and their regulated responsiveness to key cytokines in the cross-talk between innate and adaptive immunity.


Asunto(s)
Interferón gamma/genética , Interferón gamma/fisiología , Interleucina-2/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Animales , Interferón gamma/efectos de los fármacos , Interleucina-12/farmacología , Macrófagos Peritoneales/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Desnudos , Fenotipo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/inmunología , Receptores de Interleucina-2/efectos de los fármacos , Receptores de Interleucina-2/inmunología , Especificidad de la Especie
10.
Cancer Res ; 64(1): 378-85, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14729648

RESUMEN

Natural killer (NK) cells were first identified for their ability to kill tumor cells of different origin in vitro. Similarly, gammadelta T lymphocytes display strong cytotoxic activity against various tumor cell lines. However, the ability of both the NK and gammadelta cells to mediate natural immune response against human malignant tumors in vivo is still poorly defined. Severe combined immunodeficient (SCID) mice have been successfully engrafted with human tumors. In this study, the antitumor effect of local as well as of systemic treatments based on NK cells or Vdelta1 or Vdelta2 gamma/delta T lymphocytes against autologous melanoma cells was investigated in vivo. The results show that all three of the populations were effective in preventing growth of autologous human melanomas when both tumor and lymphoid cells were s.c. inoculated at the same site. However, when lymphoid cells were infused i.v., only NK cells and Vdelta1 gamma/delta T lymphocytes could either prevent or inhibit the s.c. growth of autologous melanoma. Accordingly, both NK cells and Vdelta1 gammadelta T lymphocytes could be detected at the s.c. tumor site. In contrast, Vdelta2 gammadelta T lymphocytes were only detectable in the spleen of the SCID mice. Moreover, NK cells maintained their inhibitory effect on tumor growth even after discontinuation of the treatment. Indeed they were present at the tumor site for a longer period. These data support the possibility to exploit NK cells and Vdelta1 gammadelta T lymphocytes in tumor immunotherapy. Moreover, our study emphasizes the usefulness of human tumor/SCID mouse models for preclinical evaluation of immunotherapy protocols against human tumors.


Asunto(s)
Células Asesinas Naturales/inmunología , Melanoma/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Animales , Antígenos CD/análisis , Antígenos CD/genética , División Celular , ADN/análisis , ADN/genética , Femenino , Humanos , Ratones , Ratones SCID , Reacción en Cadena de la Polimerasa , Trasplante Heterólogo/métodos
11.
Front Oncol ; 6: 171, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27532027

RESUMEN

Elucidation of molecular mechanisms underlying the aberrant phosphatidylcholine cycle in cancer cells plays in favor of the use of metabolic imaging in oncology and opens the way for designing new targeted therapies. The anomalous choline metabolic profile detected in cancer by magnetic resonance spectroscopy and spectroscopic imaging provides molecular signatures of tumor progression and response to therapy. The increased level of intracellular phosphocholine (PCho) typically detected in cancer cells is mainly attributed to upregulation of choline kinase, responsible for choline phosphorylation in the biosynthetic Kennedy pathway, but can also be partly produced by activation of phosphatidylcholine-specific phospholipase C (PC-PLC). This hydrolytic enzyme, known for implications in bacterial infection and in plant survival to hostile environmental conditions, is reported to be activated in mitogen- and oncogene-induced phosphatidylcholine cycles in mammalian cells, with effects on cell signaling, cell cycle regulation, and cell proliferation. Recent investigations showed that PC-PLC activation could account for 20-50% of the intracellular PCho production in ovarian and breast cancer cells of different subtypes. Enzyme activation was associated with PC-PLC protein overexpression and subcellular redistribution in these cancer cells compared with non-tumoral counterparts. Moreover, PC-PLC coimmunoprecipitated with the human epidermal growth factor receptor-2 (HER2) and EGFR in HER2-overexpressing breast and ovarian cancer cells, while pharmacological PC-PLC inhibition resulted into long-lasting HER2 downregulation, retarded receptor re-expression on plasma membrane and antiproliferative effects. This body of evidence points to PC-PLC as a potential target for newly designed therapies, whose effects can be preclinically and clinically monitored by metabolic imaging methods.

12.
Biochim Biophys Acta ; 1634(1-2): 1-14, 2003 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-14563408

RESUMEN

Nuclear magnetic resonance-visible mobile lipids (ML) have been reported to accumulate during cell apoptosis in vitro and in vivo. The biogenesis, biochemical nature and structure of these lipids are still under debate. In this study, a human lymphoblastoid cell line, HuT 78, was induced to apoptosis by exposure to anti-Fas monoclonal antibodies (alpha-Fas mAb) followed by incubation for different time intervals (1-24 h, hypodiploid cell fraction, H, varying from 1% to over 60%) either in the presence or in the absence of 5.0 microM Triacsin C (TRC), specific inhibitor of long-chain acyl-CoA synthetase (ACS). The increase of ML in apoptotic cells correlated linearly with H and was associated with: (a) accumulation of intracellular lipid bodies, detected by confocal laser scanning microscopy in lipophilic dye-stained cells; (b) increases, detected by thin-layer chromatography in total lipid extracts, in the relative abundance of triacylglycerides (TAG) and cholesteryl esters (CE), with corresponding decreases of phospholipids (PL). TRC completely abolished both ML and lipid body formation in anti-Fas-treated apoptotic cells, with concomitant reversion of TAG, CE and PL to control levels, but did not alter cell viability nor did it inhibit apoptosis. ML signals detected during anti-Fas-induced apoptosis therefore appear to originate from neutral lipids assembled in intracellular lipid bodies, synthesised from cellular acyl-CoA pools.


Asunto(s)
Apoptosis/fisiología , Inhibidores Enzimáticos/farmacología , Metabolismo de los Lípidos , Triazenos/farmacología , Anticuerpos Monoclonales/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Microscopía Confocal , Receptor fas/inmunología
13.
Haematologica ; 90(12): 1595-606, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16330432

RESUMEN

BACKGROUND AND OBJECTIVES: Ferroportin-1 (FPN1) is expressed in various types of cells that play critical roles in mammalian iron metabolism and appears to act as an iron exporter in these tissues. The aim of this study was to investigate whether erythroid cells possess specific mechanisms for iron export. DESIGN AND METHODS: The expression of FPN1 during human erythroid differentiation, the characterization of alternative transcripts, the modulation by iron and the subcellular localization of this protein were studied. RESULTS: FPN1 mRNA and protein are highly expressed during human erythroid differentiation. The iron-responsive element (IRE) in the 5'- untranslated region (UTR) of FPN1 mRNA is functional but, in spite of that, FPN1 protein expression, as well as mRNA level and half-life, seem not to be affected by iron. To explain these apparenthy discordant results we searched for alternative transcripts of FPN1 and found at least three different types of transcripts, displaying alternative 5' ends. Most of the FPN1 transcripts code for the canonical protein, but only half of them contain an IRE in the 5'-UTR and have the potential to be translationally regulated by iron. Expression analysis shows that alternative FPN1 transcripts are differentially expressed during erythroid differentiation. Finally, sustained expression of alternative FPN1 transcripts is apparently observed only in erythroid cells. INTERPRETATION AND CONCLUSIONS: This is the first report describing the presence of FPN1 in erythroid cells at all stages of differentiation, providing evidence that erythroid cells possess specific mechanisms of iron export. The existence of multiple FPN1 transcripts indicates a complex regulation of the FPN1 gene in erythroid cells.


Asunto(s)
Empalme Alternativo , Proteínas de Transporte de Catión/biosíntesis , Células Eritroides/metabolismo , Regulación de la Expresión Génica , Hierro/sangre , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/fisiología , Diferenciación Celular/genética , Células Cultivadas/citología , Células Cultivadas/metabolismo , Deferoxamina/farmacología , Células Eritroides/citología , Eritropoyesis , Exones/genética , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Semivida , Humanos , Quelantes del Hierro/farmacología , Células K562/citología , Células K562/metabolismo , Datos de Secuencia Molecular , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Especificidad de Órganos , Biosíntesis de Proteínas , ARN Mensajero/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Secuencias Reguladoras de Ácidos Nucleicos , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/química , Fracciones Subcelulares/ultraestructura , Transcripción Genética , Células Tumorales Cultivadas/citología , Células Tumorales Cultivadas/metabolismo
14.
FASEB J ; 17(14): 2025-36, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14597672

RESUMEN

The accessory HIV-1 Nef protein plays a key role in AIDS pathogenesis. We recently demonstrated that exogenous Nef triggers phenotypic and functional differentiation of immature dendritic cells (DCs). Here we investigated whether the Nef-induced DC differentiation occurs with morphological remodeling and have focused on the interference of Nef in the signaling pathways that regulates DC maturation. We found that exogenous Nef enters immature DCs, promoting their functional and morphological differentiation. Specifically, Nef promotes interleukin (IL) -12 release, which closely fits with nuclear factor (NF) -kappaB activation. Nef induces rearrangement of actin microfilaments, leading to uropod and ruffle formation. Moreover, Nef increases the capacity of DCs to form clusters with allogeneic CD4+ T cells, improving immunological synapse formation. Searching for molecules involved in Nef-triggered signaling pathways driving the DC maturation, we found that Nef targets Vav and promotes its tyrosine phosphorylation, associated with its nucleus-to-cytoplasm redistribution. This has a direct effect on Vav guanine nucleotide exchange factor activity for the small GTPase Rac1. We hypothesize that targeting Vav, Nef modulates both early signaling events (such as cytoskeletal rearrangement) and delayed responses (such as transcriptional regulation), promoting DC differentiation. Our results highlight how Nef may enhance T lymphocyte activation, thus fostering virus dissemination, manipulating the DC arm of the immune response.


Asunto(s)
Proteínas de Ciclo Celular , Células Dendríticas/virología , Productos del Gen nef/metabolismo , VIH-1/patogenicidad , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Citoesqueleto de Actina/ultraestructura , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/química , Citoplasma/metabolismo , Células Dendríticas/citología , Células Dendríticas/inmunología , Productos del Gen nef/análisis , Humanos , Interleucina-12/biosíntesis , FN-kappa B/metabolismo , Fosforilación , Subunidades de Proteína/biosíntesis , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-vav , Células Madre/citología , Células Madre/inmunología , Células Madre/virología , Proteína de Unión al GTP cdc42/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana , Proteína de Unión al GTP rac1/metabolismo
15.
J Leukoc Biol ; 76(4): 827-34, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15240755

RESUMEN

Human monocytes can differentiate into dendritic cells (DCs) according to the nature of environmental signals. We tested here whether the infection with the live tuberculosis vaccine bacillus Calmette-Guerin (BCG), which is known to be limited in preventing pulmonary tuberculosis, modulates monocyte and DC differentiation. We found that monocytes infected with BCG differentiate into CD1a- DCs (BCG-DCs) in the presence of granulocyte macrophage-colony stimulating factor and interleukin (IL)-4 and acquired a mature phenotype in the absence of maturation stimuli. In addition, BCG-DCs produced proinflammatory cytokines (tumor necrosis factor alpha, IL-1beta, IL-6) and IL-10 but not IL-12. BCG-DCs were able to stimulate allogeneic T lymphocytes to a similar degree as DCs generated in the absence of infection. However, BCG-DCs induced IL-4 production when cocultured with human cord-blood mononuclear cells. The induction of IL-4 production by DCs generated by BCG-infected monocytes could explain the failure of the BCG vaccine to prevent pulmonary tuberculosis.


Asunto(s)
Vacuna BCG/inmunología , Células Dendríticas/inmunología , Monocitos/microbiología , Mycobacterium bovis/inmunología , Células Th2/inmunología , Diferenciación Celular , Técnicas de Cocultivo , Citocinas/metabolismo , Células Dendríticas/citología , Sangre Fetal , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Lipopolisacáridos/farmacología
16.
PLoS One ; 8(3): e59705, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555755

RESUMEN

HIV-1 envelope glycoprotein gp120 induces, independently of infection, the release of CCL2 from macrophages. In turn, this chemokine acts as an autocrine factor enhancing viral replication. In this study, we show for the first time that phosphoinositide-specific phospholipase C (PI-PLC) is required for the production of CCL2 triggered by gp120 in macrophages. Using a combination of confocal laser-scanner microscopy, pharmacologic inhibition, western blotting and fluorescence-activated cell sorter analysis, we demonstrate that gp120 interaction with CCR5 leads to nuclear localization of the PI-PLC ß1 isozyme mediated by mitogen-activated protein kinase ERK-1/2. Notably, phosphatidylcholine-specific phospholipase C (PC-PLC), previously reported to be required for NF-kB-mediated CCL2 production induced by gp120 in macrophages, drives both ERK1/2 activation and PI-PLC ß1 nuclear localization induced by gp120. PI-PLC ß1 activation through CCR5 is also triggered by the natural chemokine ligand CCL4, but independently of ERK1/2. Finally, PI-PLC inhibition neither blocks gp120-mediated NF-kB activation nor overall accumulation of CCL2 mRNA, whereas it decreases CCL2 transcript level in the cytoplasm. These results identify nuclear PI-PLC ß1 as a new intermediate in the gp120-triggered PC-PLC-driven signal transduction pathway leading to CCL2 secretion in macrophages. The finding that a concerted gp120-mediated signaling involving both PC- and PI-specific PLCs is required for the expression of CCL2 in macrophages suggests that this signal transduction pathway may also be relevant for the modulation of viral replication in these cells. Thus, this study may contribute to identify novel targets for therapeutic intervention in HIV-1 infection.


Asunto(s)
Quimiocina CCL2/metabolismo , Citoplasma/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Macrófagos/virología , Fosfolipasa C beta/metabolismo , Butadienos/farmacología , Núcleo Celular/metabolismo , Separación Celular , Citometría de Flujo , VIH-1 , Humanos , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Microscopía Confocal , Monocitos/citología , Nitrilos/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Éteres Fosfolípidos/farmacología , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo
17.
Blood ; 111(7): 3355-63, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18203956

RESUMEN

CCL2 (MCP-1) has been shown to enhance HIV-1 replication. The expression of this chemokine by macrophages is up-modulated as a consequence of viral infection or gp120 exposure. In this study, we show for the first time that the phosphatidylcholine-specific phospholipase C (PC-PLC) is required for the production of CCL2 triggered by gp120 in human monocyte-derived macrophages (MDMs). Using a combination of pharmacologic inhibition, confocal laser-scanner microscopy, and enzymatic activity assay, we demonstrate that R5 gp120 interaction with CCR5 activates PC-PLC, as assessed by a time-dependent modification of its subcellular distribution and a concentration-dependent increase of its enzymatic activity. Furthermore, PC-PLC is required for NF-kB-mediated CCL2 production triggered by R5 gp120. Notably, PC-PLC activation through CCR5 is specifically induced by gp120, since triggering CCR5 through its natural ligand CCL4 (MIP-1beta) does not affect PC-PLC cellular distribution and enzymatic activity, as well as CCL2 secretion, thus suggesting that different signaling pathways can be activated through CCR5 interaction with HIV-1 or chemokine ligands. The identification of PC-PLC as a critical mediator of well-defined gp120-mediated effects in MDMs unravels a novel mechanism involved in bystander activation and may contribute to define potential therapeutic targets to block Env-triggered pathologic responses.


Asunto(s)
Quimiocina CCL2/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Receptores CCR5/metabolismo , Fosfolipasas de Tipo C/metabolismo , Efecto Espectador/genética , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL4 , Activación Enzimática/genética , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/genética , VIH-1/genética , Humanos , Macrófagos/patología , Macrófagos/virología , Microscopía Confocal , FN-kappa B/genética , Receptores CCR5/genética , Transducción de Señal/genética , Factores de Tiempo , Fosfolipasas de Tipo C/genética , Replicación Viral/genética
18.
Cancer Res ; 68(16): 6541-9, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18701477

RESUMEN

Elucidation of the mechanisms responsible for aberrant phosphatidylcholine (PC) metabolism in cancer cells may allow identification of novel biomarkers of tumor progression and design of new targeted anticancer therapies. We recently reported up-regulation of PC-specific phospholipases in epithelial ovarian cancer cells (EOC) compared with nontumoral (normal or immortalized) counterparts (EONT). In the present study, we focused, in the same cell systems, on levels, subcellular localization, and activity of PC-specific phospholipase C (PC-PLC), for which a key role in cell proliferation, differentiation, and apoptosis has been shown in several mammalian cells. A 66-kDa PC-PLC isoform, detected in nuclear and cytoplasmic compartments of both EOC and EONT cells, accumulated on the external plasma membrane of cancer cells only, where it colocalized with beta1 integrin, in nonraft membrane domains. PC-PLC activity was 3-fold higher in total cell lysates and 5-fold higher in membrane-enriched fractions of EOC compared with EONT cells. Serum deprivation induced in EOC, but not in EONT, cells a 3-fold decrease in PC-PLC activity, associated with a 40% drop in S-phase fraction. The recovery of both variables to their original levels in serum-restimulated (or lysophosphatidic acid-restimulated) EOC cells was strongly delayed, for at least 24 h, in the presence of the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609). The S-phase of serum-restimulated EONT cells was not sensitive to D609. These findings warrant further investigations on the role of PC-PLC and on the effects of its inhibition on the pathways responsible for constitutive EOC cell stimulation and cell proliferation.


Asunto(s)
Citoplasma/enzimología , Neoplasias Ováricas/enzimología , Fosfolipasas de Tipo C/metabolismo , Adenocarcinoma de Células Claras/enzimología , Adenocarcinoma de Células Claras/secundario , Adenocarcinoma Mucinoso/enzimología , Adenocarcinoma Mucinoso/secundario , Apoptosis/fisiología , Hidrocarburos Aromáticos con Puentes/farmacología , Carcinoma Endometrioide/enzimología , Carcinoma Endometrioide/secundario , Membrana Celular/enzimología , Membrana Celular/patología , Núcleo Celular/enzimología , Núcleo Celular/patología , Medio de Cultivo Libre de Suero/farmacología , Cistadenocarcinoma Seroso/enzimología , Cistadenocarcinoma Seroso/secundario , Citoplasma/patología , Activación Enzimática , Epitelio/enzimología , Epitelio/patología , Femenino , Citometría de Flujo , Humanos , Microdominios de Membrana , Norbornanos , Neoplasias Ováricas/patología , Ovario/enzimología , Ovario/patología , Inhibidores de Fosfodiesterasa/farmacología , Fosfolipasa D/metabolismo , Fase S/fisiología , Telomerasa/metabolismo , Tiocarbamatos , Tionas/farmacología , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/genética
19.
Eur J Immunol ; 37(10): 2912-22, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17899539

RESUMEN

CD16, the low-affinity FcIgG receptor (FcgammaRIIIA), is predominantly expressed in human NK cells. Our recent findings indicate that CD16 expression on the outer membrane surface of NK cells is correlated with the membrane expression of phosphatidylcholine-specific phospholipase C (PC-PLC). In the present study we analyzed the trafficking of CD16 from the plasma membrane to cytoplasmic regions, after stimulation with specific mAb. The CD16 receptor is internalized, likely degraded and newly synthesized; its endocytosis is independent of ATP, but requires an integral and functional actin cytoskeleton. Antibody-mediated CD16 cross-linking results in an approximately twofold increase in PC-PLC enzymatic activity within 10 min. Analysis of PC-PLC and CD16 distribution in NK cell plasma membrane demonstrates that the proteins are physically associated and partially accumulated in lipid rafts. Pre-incubation of NK cells with a PC-PLC inhibitor, D609, causes a dramatic decrease both in CD16 receptor and PC-PLC enzyme expression on the plasma membrane. Interestingly, among phenotype PBL markers, only CD16 is strongly down-modulated by D609 treatment. CD16-mediated cytotoxicity is also reduced after D609 incubation. Taken together, these data suggest that the PC-PLC enzyme could play an important role in regulating CD16 membrane expression, the CD16-mediated cytolytic mechanism and CD16-triggered signal transduction.


Asunto(s)
Células Asesinas Naturales/enzimología , Células Asesinas Naturales/inmunología , Microdominios de Membrana/enzimología , Fosfatidilcolinas/metabolismo , Receptores de IgG/biosíntesis , Fosfolipasas de Tipo C/fisiología , Anticuerpos Monoclonales/metabolismo , Biomarcadores/sangre , Células Cultivadas , Reactivos de Enlaces Cruzados/metabolismo , Pruebas Inmunológicas de Citotoxicidad , Regulación hacia Abajo/inmunología , Humanos , Inmunofenotipificación , Células Asesinas Naturales/metabolismo , Microdominios de Membrana/inmunología , Microdominios de Membrana/metabolismo , Transporte de Proteínas/inmunología , Receptores de IgG/antagonistas & inhibidores , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Especificidad por Sustrato/inmunología , Fosfolipasas de Tipo C/metabolismo
20.
J Neurosci Res ; 85(12): 2631-9, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17265465

RESUMEN

The dystrobrevins (alpha and beta) are components of the dystrophin-associated protein complex (DPC), which links the cytoskeleton to the extracellular matrix and serves as a scaffold for signaling proteins. The precise functions of the beta-dystrobrevin isoform, which is expressed in nonmuscle tissues, have not yet been determined. To gain further insights into the role of beta-dystrobrevin in brain, we performed a yeast two-hybrid screen and identified pancortin-2 as a novel beta-dystrobrevin-binding partner. Pancortins-1-4 are neuron-specific olfactomedin-related glycoproteins, highly expressed during brain development and widely distributed in the mature cerebral cortex of the mouse. Pancortins are important constituents of the extracellular matrix and are thought to play an essential role in neuronal differentiation. We characterized the interaction between pancortin-2 and beta-dystrobrevin by in vitro and in vivo association assays and mapped the binding site of pancortin-2 on beta-dystrobrevin to amino acids 202-236 of the beta-dystrobrevin molecule. We also found that the domain of interaction for beta-dystrobrevin is contained in the B part of pancortin-2, a central region that is common to all four pancortins. Our results indicate that beta-dystrobrevin could interact with all members of the pancortin family, implying that beta-dystrobrevin may be involved in brain development. We suggest that dystrobrevin, a motor protein receptor that binds kinesin heavy chain, might play a role in intracellular transport of pancortin to specific sites in the cell.


Asunto(s)
Proteínas Asociadas a la Distrofina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Clonación Molecular/métodos , Proteínas de la Matriz Extracelular/farmacocinética , Mutación , Unión Proteica , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Ratas , Isótopos de Azufre/farmacocinética , Transfección , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA