Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923138

RESUMEN

Analysis of salinity tolerance processes in wheat has focused on salt exclusion from shoots while root phenotypes have received limited attention. Here, we consider the varying phenotypic response of four bread wheat varieties that differ in their type and degree of salt tolerance and assess their molecular responses to salinity and changes in root cell wall lignification. These varieties were Westonia introgressed with Nax1 and Nax2 root sodium transporters (HKT1;4-A and HKT1;5-A) that reduce Na+ accumulation in leaves, as well as the 'tissue tolerant' Portuguese landrace Mocho de Espiga Branca that has a mutation in the homologous gene HKT1;5-D and has high Na+ concentration in leaves. These three varieties were compared with the relatively more salt-sensitive cultivar Gladius. Through the use of root histochemical analysis, ion concentrations, as well as differential proteomics and targeted metabolomics, we provide an integrated view of the wheat root response to salinity. We show different metabolic re-arrangements in energy conversion, primary metabolic machinery and phenylpropanoid pathway leading to monolignol production in a genotype and genotype by treatment-dependent manner that alters the extent and localisation of root lignification which correlated with an improved capacity of wheat roots to cope better under salinity stress.

2.
New Phytol ; 242(4): 1630-1644, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105548

RESUMEN

Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.


Asunto(s)
Micorrizas , Oomicetos , Fósforo , Micorrizas/fisiología , Fósforo/metabolismo , Oomicetos/fisiología , Oomicetos/patogenicidad , Eucalyptus/microbiología , Eucalyptus/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/microbiología , Simbiosis/fisiología , Especificidad de la Especie , Ambiente
3.
Ann Bot ; 133(3): 483-494, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198749

RESUMEN

BACKGROUND AND AIMS: Soils in south-western Australia are severely phosphorus (P) impoverished, and plants in this region have evolved a variety of P-acquisition strategies. Phosphorus acquisition by Adenanthos cygnorum (Proteaceae) is facilitated by P-mobilizing neighbours which allows it to extend its range of habitats. However, we do not know if other Adenanthos species also exhibit a strategy based on facilitation for P acquisition in P-impoverished environments. METHODS: We collected leaf and soil samples of Adenanthosbarbiger, A. cuneatus, A.meisneri,A. obovatus, A. sericeus and Adenanthos sp. Whicher Range (G.J. Keighery 9736) growing in their natural habitats at different locations within the severely P-limited megadiverse environment of south-western Australia. Hydroponic experiments were conducted to collect the carboxylates exuded by cluster roots. Pot experiments in soil were carried out to measure rhizosheath phosphatase activity. KEY RESULTS: We found no evidence for facilitation of P uptake in any of the studied Adenanthos species. Like most Proteaceae, A. cuneatus, A. meisneri, A. obovatus, A. sericeus and Adenanthos sp. Whicher Range (G.J. Keighery 9736) expressed P-mining strategies, including the formation of cluster roots. Cluster roots of A. obovatus were less effective than those of the other four Adenanthos species. In contrast to what is known for most Proteaceae, we found no cluster roots for A. barbiger. This species probably expressed a post-fire P-acquisition strategy. All Adenanthos species used P highly efficiently for photosynthesis, like other Proteaceae in similar natural habitats. CONCLUSIONS: Adenanthos is the first genus of Proteaceae found to express multiple P-acquisition strategies. The diversity of P-acquisition strategies in these Proteaceae, coupled with similarly diverse strategies in Fabaceae and Myrtaceae, demonstrates that caution is needed in making family- or genus-wide extrapolations about the strategies exhibited in severely P-impoverished megadiverse ecosystems.


Asunto(s)
Fósforo , Proteaceae , Fósforo/análisis , Ecosistema , Australia Occidental , Raíces de Plantas/química , Suelo
4.
New Phytol ; 237(4): 1122-1135, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36328763

RESUMEN

Leaf phosphorus (P) comprises four major fractions: inorganic phosphate (Pi ), nucleic acids, phospholipids, P-containing metabolites and a residual fraction. In this review paper, we investigated whether allocation of P fractions varies among groups of terrestrial vascular plants, and is indicative of a species' strategy to use P efficiently. We found that as leaf total P concentration increases, the Pi fraction increases the most, without a plateau, while other fractions plateau. Variability of the concentrations of leaf P fractions is greatest among families > species(family) > regions > plant life forms. The percentage of total P allocated to nucleic acid-P (20-35%) and lipid-P (14-34%) varies less among families/species. High photosynthetic P-use efficiency is associated with low concentrations of all P fractions, and preferential allocation of P to metabolite-P and mesophyll cells. Sequential resorption of P from senescing leaves starts with Pi , followed by metabolite-P, and then other organic P fractions. Allocation of P to leaf P fractions varies with season. Leaf phytate concentrations vary considerably among species, associated with variation in photosynthesis and defence. Plasticity of P allocation to its fractions is important for acclimation to low soil P availability, and species-specific P allocation is needed for co-occurrence with other species.


Asunto(s)
Fósforo , Hojas de la Planta , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Células del Mesófilo/metabolismo , Fosfatos/metabolismo , Suelo , Fotosíntesis
5.
Physiol Plant ; 174(5): e13765, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36281836

RESUMEN

Populus is a valuable and fast-growing tree species commonly cultivated for economic and scientific purposes. But most of the poplar species are sensitive to drought and salt stress. Thus, we compared the physiological effects of osmotic stress (PEG8000) and salt treatment (NaCl) on poplar roots to identify potential strategies for future breeding or genetic engineering approaches. We investigated root anatomy using epifluorescence microscopy, changes in root suberin composition and amount using gas chromatography, transcriptional reprogramming using RNA sequencing, and modifications of root transport physiology using a pressure chamber. Poplar roots reacted to the imposed stress conditions, especially in the developing younger root tip region, with remarkable differences between both types of stress. Overall, the increase in suberin content was surprisingly small, but the expression of key suberin biosynthesis genes was strongly induced. Significant reductions of the radial water transport in roots were only observed for the osmotic and not the hydrostatic hydraulic conductivity. Our data indicate that the genetic enhancement of root suberization processes in poplar might be a promising target to convey increased tolerance, especially against toxic sodium chloride.


Asunto(s)
Populus , Populus/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Meristema , Raíces de Plantas/metabolismo , Estrés Salino , Agua/metabolismo
6.
J Exp Bot ; 72(4): 1490-1505, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33170269

RESUMEN

Very few of the >650 Proteaceae species in south-western Australia cope with the high calcium (Ca) levels in young, calcareous soils (soil indifferent); most are Ca sensitive and occur on nutrient-impoverished, acidic soils (calcifuge). We assessed possible control points for Ca transport across roots of two soil-indifferent (Hakea prostrata and Banksia prionotes) and two calcifuge (H. incrassata and B. menziesii) Proteaceae. Using quantitative X-ray microanalysis, we investigated cell-specific elemental Ca concentrations at two positions behind the apex in relation to development of apoplastic barriers in roots of plants grown in nutrient solution with low or high Ca supply. In H. prostrata, Ca accumulated in outer cortical cells at 20 mm behind the apex, but [Ca] was low in other cell types. In H. incrassata, [Ca] was low in all cells. Accumulation of Ca in roots of H. prostrata corresponded to development of apoplastic barriers in the endodermis. We found similar [Ca] profiles in roots and similar [Ca] in leaves of two contrasting Banksia species. Soil-indifferent Hakea and Banksia species show different strategies to inhabit calcareous soils: H. prostrata intercepts Ca in roots, reducing transport to shoots, whereas B. prionotes allocates Ca to specific leaf cells.


Asunto(s)
Proteaceae , Fósforo , Raíces de Plantas/química , Suelo , Australia Occidental
7.
New Phytol ; 228(3): 869-883, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32726881

RESUMEN

Endemism and rarity have long intrigued scientists. We focused on a rare endemic and critically-endangered species in a global biodiversity hotspot, Grevillea thelemanniana (Proteaceae). We carried out plant and soil analyses of four Proteaceae, including G. thelemanniana, and combined these with glasshouse studies. The analyses related to hydrology and plant water relations as well as soil nutrient concentrations and plant nutrition, with an emphasis on sodium (Na) and calcium (Ca). The local hydrology and matching plant traits related to water relations partially accounted for the distribution of the four Proteaceae. What determined the rarity of G. thelemanniana, however, was its accumulation of Ca. Despite much higher total Ca concentrations in the leaves of the rare G. thelemanniana than in the common Proteaceae, very few Ca crystals were detected in epidermal or mesophyll cells. Instead of crystals, G. thelemanniana epidermal cell vacuoles contained exceptionally high concentrations of noncrystalline Ca. Calcium ameliorated the negative effects of Na on the very salt-sensitive G. thelemanniana. Most importantly, G. thelemanniana required high concentrations of Ca to balance a massively accumulated feeding-deterrent carboxylate, trans-aconitate. This is the first example of a calcicole species accumulating and using Ca to balance accumulation of an antimetabolite.


Asunto(s)
Proteaceae , Calcio , Células del Mesófilo , Hojas de la Planta , Suelo
8.
Plant Cell Environ ; 43(2): 344-357, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31762057

RESUMEN

Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hordeum/metabolismo , Lípidos/farmacología , Presión Osmótica/efectos de los fármacos , Presión Osmótica/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Acuaporinas/metabolismo , Transporte Biológico , Hordeum/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Prolina/metabolismo , Transcriptoma , Agua/metabolismo
9.
J Exp Bot ; 71(15): 4452-4468, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32026944

RESUMEN

Water and nitrogen availability limit crop productivity globally more than most other environmental factors. Plant availability of macronutrients such as nitrate is, to a large extent, regulated by the amount of water available in the soil, and, during drought episodes, crops can become simultaneously water and nitrogen limited. In this review, we explore the intricate relationship between water and nitrogen transport in plants, from transpiration-driven mass flow in the soil to uptake by roots via membrane transporters and channels and transport to aerial organs. We discuss the roles of root architecture and of suberized hydrophobic root barriers governing apoplastic water and nitrogen movement into the vascular system. We also highlight the need to identify the signalling cascades regulating water and nitrogen transport, as well as the need for targeted physiological analyses of plant traits influencing water and nitrogen uptake. We further advocate for incorporation of new phenotyping technologies, breeding strategies, and agronomic practices to improve crop yield in water- and nitrogen-limited production systems.


Asunto(s)
Nitrógeno , Agua , Transporte Biológico , Fitomejoramiento , Raíces de Plantas
10.
New Phytol ; 221(1): 180-194, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30055115

RESUMEN

Barley (Hordeum vulgare) is more drought tolerant than other cereals, thus making it an excellent model for the study of the chemical, transcriptomic and physiological effects of water deficit. Roots are the first organ to sense soil water deficit. Therefore, we studied the response of barley seminal roots to different water potentials induced by polyethylene glycol (PEG) 8000. We investigated changes in anatomical parameters by histochemistry and microscopy, quantitative and qualitative changes in suberin composition by analytical chemistry, transcript changes by RNA-sequencing (RNA-Seq), and the radial water and solute movement of roots using a root pressure probe. In response to osmotic stress, genes in the suberin biosynthesis pathway were upregulated that correlated with increased suberin amounts in the endodermis and an overall reduction in hydraulic conductivity (Lpr ). In parallel, transcriptomic data indicated no or only weak effects of osmotic stress on aquaporin expression. These results indicate that osmotic stress enhances cell wall suberization and markedly reduces Lpr of the apoplastic pathway, whereas Lpr of the cell-to-cell pathway is not altered. Thus, the sealed apoplast markedly reduces the uncontrolled backflow of water from the root to the medium, whilst keeping constant water flow through the highly regulated cell-to-cell path.


Asunto(s)
Hordeum/fisiología , Presión Osmótica/fisiología , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Transporte Biológico , Pared Celular/metabolismo , Sequías , Perfilación de la Expresión Génica , Hordeum/química , Hordeum/efectos de los fármacos , Lípidos/análisis , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Polietilenglicoles/farmacología , Análisis de Secuencia de ARN
11.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817232

RESUMEN

NAC (NAM (no apical meristem), ATAF1/2, and CUC2 (cup-shaped cotyledon)) proteins are one of the largest families of plant-specific transcription factors, and this family is present in a wide range of land plants. Here, we have investigated the role of ANAC046 in the regulation of suberin biosynthesis and deposition in Arabidopsis. Subcellular localization and transcriptional activity assays showed that ANAC046 localizes in the nucleus, where it functions as a transcription activator. Analysis of the PANAC046:GUS lines revealed that ANAC046 is mainly expressed in the root endodermis and periderm, and is also induced in leaves by wounding. The transgenic lines overexpressing ANAC046 exhibited defective surfaces on the aerial plant parts compared to the wild-type (WT) as characterized by increased permeability for Toluidine blue stain and greater chlorophyll leaching. Quantitative RT-PCR analysis showed that the expression of suberin biosynthesis genes was significantly higher in the roots and leaves of overexpression lines compared to the WT. The biochemical analysis of leaf cuticular waxes showed that the overexpression lines accumulated 30% more waxes than the WT. Concurrently, overexpression lines also deposited almost twice the amount of suberin content in their roots compared with the WT. Taken together, these results showed that ANAC046 is an important transcription factor that promotes suberin biosynthesis in Arabidopsis thaliana roots.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lípidos/biosíntesis , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Ceras/metabolismo
12.
New Phytol ; 219(2): 518-529, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29756639

RESUMEN

Root foraging and root physiology such as exudation of carboxylates into the rhizosphere are important strategies for plant phosphorus (P) acquisition. We used 100 chickpea (Cicer arietinum) genotypes with diverse genetic backgrounds to study the relative roles of root morphology and physiology in P acquisition. Plants were grown in pots in a low-P sterilized river sand supplied with 10 µg P g-1 soil as FePO4 , a poorly soluble form of P. There was a large genotypic variation in root morphology (total root length, root surface area, mean root diameter, specific root length and root hair length), and root physiology (rhizosheath pH, carboxylates and acid phosphatase activity). Shoot P content was correlated with total root length, root surface area and total carboxylates per plant, particularly malonate. A positive correlation was found between mature leaf manganese (Mn) concentration and carboxylate amount in rhizosheath relative to root DW. This is the first study to demonstrate that the mature leaf Mn concentration can be used as an easily measurable proxy for the assessment of belowground carboxylate-releasing processes in a range of chickpea genotypes grown under low-P, and therefore offers an important breeding trait, with potential application in other crops.


Asunto(s)
Cicer/metabolismo , Manganeso/metabolismo , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Semillas/metabolismo , Fosfatasa Ácida/metabolismo , Biomasa , Ácidos Carboxílicos/metabolismo , Cicer/genética , Genotipo , Concentración de Iones de Hidrógeno , Lípidos , Fósforo/farmacología , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Análisis de Componente Principal , Carácter Cuantitativo Heredable , Rizosfera
13.
Plant Cell ; 26(9): 3569-88, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25217507

RESUMEN

Effective regulation of water balance in plants requires localized extracellular barriers that control water and solute movement. We describe a clade of five Arabidopsis thaliana ABCG half-transporters that are required for synthesis of an effective suberin barrier in roots and seed coats (ABCG2, ABCG6, and ABCG20) and for synthesis of an intact pollen wall (ABCG1 and ABCG16). Seed coats of abcg2 abcg6 abcg20 triple mutant plants had increased permeability to tetrazolium red and decreased suberin content. The root system of triple mutant plants was more permeable to water and salts in a zone complementary to that affected by the Casparian strip. Suberin of mutant roots and seed coats had distorted lamellar structure and reduced proportions of aliphatic components. Root wax from the mutant was deficient in alkylhydroxycinnamate esters. These mutant plants also had few lateral roots and precocious secondary growth in primary roots. abcg1 abcg16 double mutants defective in the other two members of the clade had pollen with defects in the nexine layer of the tapetum-derived exine pollen wall and in the pollen-derived intine layer. Mutant pollen collapsed at the time of anther desiccation. These mutants reveal transport requirements for barrier synthesis as well as physiological and developmental consequences of barrier deficiency.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Espacio Extracelular/metabolismo , Lípidos/biosíntesis , Polen/citología , Polen/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Vías Biosintéticas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucuronidasa/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación/genética , Permeabilidad , Fenotipo , Raíces de Plantas/metabolismo , Polen/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/metabolismo , Ceras/metabolismo
14.
Ann Bot ; 119(4): 629-643, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28065927

RESUMEN

Background and Aims: Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Methods: Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. Key Results: When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Conclusions: Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways).


Asunto(s)
Hordeum/fisiología , Raíces de Plantas/fisiología , Transporte Biológico/fisiología , Cromatografía de Gases y Espectrometría de Masas , Hordeum/anatomía & histología , Hordeum/metabolismo , Hidroponía , Presión Hidrostática , Raíces de Plantas/anatomía & histología , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Agua/metabolismo
15.
Planta ; 243(1): 231-49, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26384983

RESUMEN

MAIN CONCLUSION: Non-optimal ammonium levels significantly alter root architecture, anatomy and root permeabilities for water and nutrient ions. Higher ammonium levels induced strong apoplastic barriers whereas it was opposite for lower levels. Application of nitrogen fertilizer increases crop productivity. However, non-optimal applications can have negative effects on plant growth and development. In this study, we investigated how different levels of ammonium (NH4 (+)) [low (30 or 100 µM) or optimum (300 µM) or high (1000 or 3000 µM)] affect physio-chemical properties of 1-month-old, hydroponically grown rice roots. Different NH4 (+) treatments markedly altered the root architecture and anatomy. Plants grown in low NH4 (+) had the longest roots with a weak deposition of suberised and lignified apoplastic barriers, and it was opposite for plants grown in high NH4 (+). The relative expression levels of selected suberin and lignin biosynthesis candidate genes, determined using qRT-PCR, were lowest in the roots from low NH4 (+), whereas, they were highest for those grown in high NH4 (+). This was reflected by the suberin and lignin contents, and was significantly lower in roots from low NH4 (+) resulting in greater hydraulic conductivity (Lp r) and solute permeability (P sr) than roots from optimum NH4 (+). In contrast, roots grown at high NH4 (+) had markedly greater suberin and lignin contents, which were reflected by strong barriers. These barriers significantly decreased the P sr of roots but failed to reduce the Lp r below those of roots grown in optimum NH4 (+), which can be explained in terms of the physical properties of the molecules used and the size of pores in the apoplast. It is concluded that, in rice, non-optimal NH4 (+) levels differentially affected root properties including Lp r and P sr to successfully adapt to the changing root environment.


Asunto(s)
Compuestos de Amonio/farmacología , Lignina/metabolismo , Lípidos/análisis , Oryza/efectos de los fármacos , Agua/metabolismo , Compuestos de Amonio/metabolismo , Transporte Biológico/efectos de los fármacos , Pared Celular/metabolismo , Hidroponía , Lípidos/biosíntesis , Nitrógeno/metabolismo , Oryza/anatomía & histología , Oryza/genética , Oryza/metabolismo , Permeabilidad/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Suelo , Soluciones
16.
Plant J ; 80(1): 40-51, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25041515

RESUMEN

Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP-binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP-RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C(28) and C(30) fatty acids or ω-OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Oryza/genética , Agua/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Transporte Biológico , Membrana Celular/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Lignina/metabolismo , Lípidos/química , Mutación , Oryza/citología , Oryza/fisiología , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión
17.
J Exp Bot ; 65(4): 965-79, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24420570

RESUMEN

The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4(+)). The NH4(+) uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4(+) transport in rice plants. However, little is known about its involvement in NH4(+) uptake in rice roots and subsequent effects on NH4(+) assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4(+) permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4(+) content in the shoots and roots than the WT. Direct NH4(+) fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4(+) contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4(+) levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.


Asunto(s)
Compuestos de Amonio/metabolismo , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Biomasa , Metabolismo de los Hidratos de Carbono , Proteínas de Transporte de Catión/metabolismo , Clorofila/metabolismo , Grano Comestible/citología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Expresión Génica , Genes Reporteros , Glutamina/metabolismo , Modelos Biológicos , Nitrógeno/metabolismo , Cebollas/citología , Cebollas/genética , Cebollas/metabolismo , Oryza/citología , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Permeabilidad , Fenotipo , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Xilema/citología , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
18.
Plant Cell ; 23(6): 2225-46, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21705642

RESUMEN

Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.


Asunto(s)
Alcoholes Grasos/metabolismo , Flores/crecimiento & desarrollo , Oryza/anatomía & histología , Oryza/enzimología , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Alcoholes Grasos/química , Flores/química , Flores/enzimología , Flores/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oxidorreductasas/clasificación , Oxidorreductasas/genética , Fenotipo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/enzimología , Polen/ultraestructura , Distribución Tisular
19.
Sci Total Environ ; 901: 166395, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37597552

RESUMEN

South-western Australia is a global biodiversity hotspot and has some of the oldest and most phosphorus (P)-impoverished soils in the world. Proteaceae is one of the dominant P-efficient plant families there, but it is unknown how leaf P concentrations and foliar P allocation of Proteaceae and coexisting dominant plant families vary between seasons and habitats. To investigate this, we selected 18 species from Proteaceae, Myrtaceae and Fabaceae, six from each family, in two habitats from Alison Baird Reserve (32°1'19''S 15°58'52''E) in Western Australia. Total leaf P and nitrogen (N) concentrations, leaf mass per area, photosynthetic rate, pre-dawn leaf water potential and foliar P fractions were determined for each species both at the end of summer (March 2019 and early April 2020) and at the end of winter (September 2019). Soil P availability was also determined for each site. This is the very first study that focused on seasonal changes of foliar P fractions from different P-impoverished environments in three plant families. However, contrary to our expectation, we found little evidence for convergence of foliar P allocation within family, season or habitat. Each species exhibited a specific species-dependent pattern of foliar P allocation, and many species showed differences between seasons. Native plants in south-western Australia converged on a high photosynthetic P-use efficiency, but each species showed its own unique way associated with that outcome.

20.
Plant Cell Environ ; 34(8): 1223-40, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21414017

RESUMEN

It has been shown that rice roots grown in a stagnant medium develop a tight barrier to radial oxygen loss (ROL), whereas aerated roots do not. This study investigated whether the induction of a barrier to ROL affects water and solute permeabilities. Growth in stagnant medium markedly reduced the root growth rate relative to aerated conditions. Histochemical studies revealed an early deposition of Casparian bands (CBs) and suberin lamellae (SL) in both the endodermis (EN) and exodermis, and accelerated lignification of stagnant roots. The absolute amounts of suberin, lignin and esterified aromatics (coumaric and ferulic acid) in these barriers were significantly higher in stagnant roots. However, correlative permeability studies revealed that early deposition of barriers in stagnant roots failed to reduce hydraulic conductivity (Lp(r) ) below those of aerated roots. In contrast to Lp(r) , the NaCl permeability (P(sr) ) of stagnant roots was markedly lower than that of aerated roots, as indicated by an increased reflection coefficient (σ(sr) ). In stagnant roots, P(sr) decreased by 60%, while σ(sr) increased by 55%. The stagnant medium differentially affected the Lp(r) and P(sr) of roots, which can be explained in terms of the physical properties of the molecules used and the size of the pores in the apoplast.


Asunto(s)
Lignina/metabolismo , Lípidos/análisis , Oryza/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Pared Celular/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Lignina/análisis , Oryza/metabolismo , Oxígeno/metabolismo , Permeabilidad , Exudados de Plantas/análisis , Raíces de Plantas/química , Presión , Cloruro de Sodio/farmacocinética , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA