Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805154

RESUMEN

Intermediate junctional epidermolysis bullosa caused by mutations in the COL17A1 gene is characterized by the frequent development of blisters and erosions on the skin and mucous membranes. The rarity of the disease and the heterogeneity of the underlying mutations renders therapy developments challenging. However, the high number of short in-frame exons facilitates the use of antisense oligonucleotides (AON) to restore collagen 17 (C17) expression by inducing exon skipping. In a personalized approach, we designed and tested three AONs in combination with a cationic liposomal carrier for their ability to induce skipping of COL17A1 exon 7 in 2D culture and in 3D skin equivalents. We show that AON-induced exon skipping excludes the targeted exon from pre-mRNA processing, which restores the reading frame, leading to the expression of a slightly truncated protein. Furthermore, the expression and correct deposition of C17 at the dermal-epidermal junction indicates its functionality. Thus, we assume AON-mediated exon skipping to be a promising tool for the treatment of junctional epidermolysis bullosa, particularly applicable in a personalized manner for rare genotypes.


Asunto(s)
Autoantígenos/metabolismo , Epidermólisis Ampollosa de la Unión/genética , Colágenos no Fibrilares/metabolismo , Oligonucleótidos Antisentido/genética , Empalme del ARN , Empalme Alternativo , Biopsia , Línea Celular , Supervivencia Celular , Epidermólisis Ampollosa de la Unión/metabolismo , Epidermólisis Ampollosa de la Unión/terapia , Exones , Genotipo , Homocigoto , Humanos , Queratinocitos/citología , Liposomas/química , Mutación , Técnicas de Cultivo de Órganos , ARN Mensajero/metabolismo , Colágeno Tipo XVII
2.
Cell Commun Signal ; 18(1): 61, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32276641

RESUMEN

BACKGROUND: Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. METHODS: MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. RESULTS: Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. CONCLUSION: The discovery that miR-10b mediates an aspect of cancer stemness - that of enhanced tumor cell adhesion, known to facilitate metastatic colonization - provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.


Asunto(s)
Carcinoma de Células Escamosas , Epidermólisis Ampollosa Distrófica/patología , MicroARNs/fisiología , Células Madre Neoplásicas , Neoplasias Cutáneas , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Invasividad Neoplásica , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Cultivo Primario de Células , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
3.
Cancers (Basel) ; 15(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37444397

RESUMEN

Machine learning has been proven to be a powerful tool in the identification of diagnostic tumor biomarkers but is often impeded in rare cancers due to small patient numbers. In patients suffering from recessive dystrophic epidermolysis bullosa (RDEB), early-in-life development of particularly aggressive cutaneous squamous-cell carcinomas (cSCCs) represents a major threat and timely detection is crucial to facilitate prompt tumor excision. As miRNAs have been shown to hold great potential as liquid biopsy markers, we characterized miRNA signatures derived from cultured primary cells specific for the potential detection of tumors in RDEB patients. To address the limitation in RDEB-sample accessibility, we analyzed the similarity of RDEB miRNA profiles with other tumor entities derived from the Cancer Genome Atlas (TCGA) repository. Due to the similarity in miRNA expression with RDEB-SCC, we used HN-SCC data to train a tumor prediction model. Three models with varying complexity using 33, 10 and 3 miRNAs were derived from the elastic net logistic regression model. The predictive performance of all three models was determined on an independent HN-SCC test dataset (AUC-ROC: 100%, 83% and 96%), as well as on cell-based RDEB miRNA-Seq data (AUC-ROC: 100%, 100% and 91%). In addition, the ability of the models to predict tumor samples based on RDEB exosomes (AUC-ROC: 100%, 93% and 100%) demonstrated the potential feasibility in a clinical setting. Our results support the feasibility of this approach to identify a diagnostic miRNA signature, by exploiting publicly available data and will lay the base for an improvement of early RDEB-SCC detection.

4.
Orphanet J Rare Dis ; 15(1): 292, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076941

RESUMEN

BACKGROUND: Hereditary epidermolysis bullosa (EB) comprises a heterogeneous group of rare genodermatoses, which are caused by mutations in genes involved in the maintenance of the structural and functional integrity of dermo-epidermal adhesion in various stratified epithelia. In severe variants, generalized skin disease, extracutaneous manifestations and multi-organ involvement cause considerable morbidity and mortality. Causal and early treatment by re-expression of a respective mutated gene is the major long-term goal in therapy development. However, characterization and targeted modulation of pathogenic molecular cascades in EB also holds great promise as a symptom-relieving approach to ameliorate phenotype, complications and quality of life. Small molecules are chemical structures of less than 900 Da that can diffuse across cell membranes and interfere with target biomolecules, thus influencing their function at different levels. They constitute the vast majority of active components of all approved drugs. METHODS: We performed PubMed and Google Scholar search for publications and screened FDA- and EMA-hosted clinical trial registries to identify studies using small molecule-based drugs for epidermolysis bullosa. Upon detailed analysis this resulted in the identification of a total of 84 studies. RESULTS: We identified 52 publications and 32 registered trials that investigate small molecules for their safety and efficacy as treatment for different aspects of epidermolysis bullosa. Further, a total of 38 different small molecules clinically used in EB were found. Most frequent outcome measures concerned wound healing, reduction in blister numbers, as well as reduction of itch and pain, predominantly for EBS and RDEB. CONCLUSION: We provide a comprehensive summary of the current status of clinical small molecule development for EB and discuss prospects and limitations in orphan drug development for rare conditions like EB.


Asunto(s)
Epidermólisis Ampollosa , Calidad de Vida , Desarrollo de Medicamentos , Epidermólisis Ampollosa/tratamiento farmacológico , Epidermólisis Ampollosa/genética , Humanos , Fenotipo , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA