Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 293(45): 17622-17630, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30237165

RESUMEN

Toxoplasma gondii is a globally prevalent parasitic protist. It is well-known for its ability to infect almost all nucleated vertebrate cells, which is reflected by its unique metabolic architecture. Its fast-growing tachyzoite stage catabolizes glucose via glycolysis to yield l-lactate as a major by-product that must be exported from the cell to prevent toxicity; the underlying mechanism remains to be elucidated, however. Herein, we report three formate-nitrite transporter (FNT)-type monocarboxylate/proton symporters located in the plasma membrane of the T. gondii tachyzoite stage. We observed that all three proteins transport both l-lactate and formate in a pH-dependent manner and are inhibited by 2-hydroxy-chromanones (a class of small synthetic molecules). We also show that these compounds pharmacologically inhibit T. gondii growth. Using a chemical biology approach, we identified the critical residues in the substrate-selectivity region of the parasite transporters that determine differential specificity and sensitivity toward both substrates and inhibitors. Our findings further indicate that substrate specificity in FNT family proteins from T. gondii has evolved such that a functional repurposing of prokaryotic-type transporters helps fulfill a critical metabolic role in a clinically important parasitic protist. In summary, we have identified and characterized the lactate transporters of T. gondii and have shown that compounds blocking the FNTs in this parasite can inhibit its growth, suggesting that these transporters could have utility as potential drug targets.


Asunto(s)
Antiprotozoarios/química , Membrana Celular , Transportadores de Ácidos Monocarboxílicos , Proteínas Protozoarias , Toxoplasma , Sitios de Unión , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especificidad por Sustrato , Toxoplasma/genética , Toxoplasma/metabolismo
2.
Microbiol Spectr ; : e0122924, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162502

RESUMEN

Apicomplexan parasites mobilize ionic calcium (Ca2+) from intracellular stores to promote microneme secretion and facilitate motile processes including gliding motility, invasion, and egress. Recently, a multipass transmembrane protein, ICM1, was found to be important for calcium mobilization in Plasmodium falciparum and P. berghei. Comparative genomics and phylogenetics have revealed putative ICM orthologs in Toxoplasma gondii and other apicomplexans. T. gondii possesses two ICM-like proteins, which we have named TgICM1-L (TGGT1_305470) and TgICM2-L (TGGT1_309910). TgICM1-L and TgICM2-L localized to undefined puncta within the parasite cytosol. TgICM1-L and TgICM2-L are individually dispensable in tachyzoites, suggesting a potential compensatory relationship between the two proteins may exist. Surprisingly, mutants lacking both TgICM1-L and TgICM2-L are fully viable, exhibiting no obvious defects in growth, microneme secretion, invasion, or egress. Furthermore, loss of TgICM1-L, TgICM2-L, or both does not impair the parasite's ability to mobilize Ca2+. These findings suggest that additional proteins may participate in Ca2+ mobilization or import in Apicomplexa, reducing the dependence on ICM-like proteins in T. gondii. Collectively, these results highlight similar yet distinct mechanisms of Ca2+ mobilization between T. gondii and Plasmodium.IMPORTANCECa2+ signaling plays a crucial role in governing apicomplexan motility; yet, the mechanisms underlying Ca2+ mobilization from intracellular stores in these parasites remain unclear. In Plasmodium, the necessity of ICM1 for Ca2+ mobilization raises the question of whether this mechanism is conserved in other apicomplexans. Investigation into the orthologs of Plasmodium ICM1 in T. gondii revealed a differing requirement for ICM proteins between the two parasites. This study suggests that T. gondii employs ICM-independent mechanisms to regulate Ca2+ homeostasis and mobilization. Proteins involved in Ca2+ signaling in apicomplexans represent promising targets for therapeutic development.

3.
Commun Biol ; 6(1): 306, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949328

RESUMEN

Toxoplasma gondii is a prevalent zoonotic pathogen infecting livestock as well as humans. The exceptional ability of this parasite to reproduce in several types of nucleated host cells necessitates a coordinated usage of endogenous and host-derived nutritional resources for membrane biogenesis. Phosphatidylethanolamine is the second most common glycerophospholipid in T. gondii, but how its requirement in the acutely-infectious fast-dividing tachyzoite stage is satisfied remains enigmatic. This work reveals that the parasite deploys de novo synthesis and salvage pathways to meet its demand for ester- and ether-linked PtdEtn. Auxin-mediated depletion of the phosphoethanolamine cytidylyltransferase (ECT) caused a lethal phenotype in tachyzoites due to impaired invasion and cell division, disclosing a vital role of the CDP-ethanolamine pathway during the lytic cycle. In accord, the inner membrane complex appeared disrupted concurrent with a decline in its length, parasite width and major phospholipids. Integrated lipidomics and isotope analyses of the TgECT mutant unveiled the endogenous synthesis of ester-PtdEtn, and salvage of ether-linked lipids from host cells. In brief, this study demonstrates how T. gondii operates various means to produce distinct forms of PtdEtn while featuring the therapeutic relevance of its de novo synthesis.


Asunto(s)
Toxoplasma , Humanos , Toxoplasma/genética , Toxoplasma/metabolismo , Fosfatidiletanolaminas/metabolismo , Éter/metabolismo , Glicerofosfolípidos/metabolismo , Éteres de Etila/metabolismo , Éteres/metabolismo
4.
Comput Struct Biotechnol J ; 19: 719-731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33510872

RESUMEN

Successful asexual reproduction of intracellular pathogens depends on their potential to exploit host resources and subvert antimicrobial defense. In this work, we deployed two prevalent apicomplexan parasites of mammalian cells, namely Toxoplasma gondii and Eimeria falciformis, to identify potential host determinants of infection. Expression analyses of the young adult mouse colonic (YAMC) epithelial cells upon infection by either parasite showed regulation of several distinct transcripts, indicating that these two pathogens program their intracellular niches in a tailored manner. Conversely, parasitized mouse embryonic fibroblasts (MEFs) displayed a divergent transcriptome compared to corresponding YAMC epithelial cells, suggesting that individual host cells mount a fairly discrete response when encountering a particular pathogen. Among several host transcripts similarly altered by T. gondii and E. falciformis, we identified cFos, a master transcription factor, that was consistently induced throughout the infection. Indeed, asexual growth of both parasites was strongly impaired in MEF host cells lacking cFos expression. Last but not the least, our differential transcriptomics of the infected MEFs (parental and cFos-/- mutant) and YAMC epithelial cells disclosed a cFos-centered network, underlying signal cascades, as well as a repertoire of nucleotides- and ion-binding proteins, which presumably act in consort to acclimatize the mammalian cell and thereby facilitate the parasite development.

5.
mBio ; 12(5): e0205721, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34607461

RESUMEN

Toxoplasma gondii extracellular signal-regulated kinase 7 (ERK7) is known to contribute to the integrity of the apical complex and to participate in the final step of conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade, or egress from host cells. In contrast to a previous report, we show here that the depletion of ERK7 phenocopies the depletion of the apical cap protein AC9 or AC10. The absence of ERK7 leads to the loss of the apical polar ring (APR), the disorganization of the basket of subpellicular microtubules (SPMTs), and a severe impairment in microneme secretion. Ultrastructure expansion microscopy (U-ExM), coupled to N-hydroxysuccinimide ester (NHS-ester) staining on intracellular parasites, offers an unprecedented level of resolution and highlights the disorganization of the rhoptries as well as the dilated plasma membrane at the apical pole in the absence of ERK7. Comparative proteomics analysis of wild-type and ERK7-depleted parasites confirmed the disappearance of known apical complex proteins, including markers of the apical polar ring and a new apical cap named AC11. Concomitantly, the absence of ERK7 led to an accumulation of microneme proteins, resulting from the defect in the exocytosis of the organelles. AC9-depleted parasites were included as controls and exhibited an increase in inner membrane complex proteins, with two new proteins assigned to this compartment, namely, IMC33 and IMC34. IMPORTANCE The conoid is an enigmatic, dynamic organelle positioned at the apical tip of the coccidian subgroup of the Apicomplexa, close to the apical polar ring (APR) from which the subpellicular microtubules (SPMTs) emerge and through which the secretory organelles (micronemes and rhoptries) reach the plasma membrane for exocytosis. In Toxoplasma gondii, the conoid protrudes concomitantly with microneme secretion, during egress, motility, and invasion. The conditional depletion of the apical cap structural protein AC9 or AC10 leads to a disorganization of SPMTs as well as the loss of the APR and conoid, resulting in a microneme secretion defect and a block in motility, invasion, and egress. We show here that the depletion of the kinase ERK7 phenocopies AC9 and AC10 mutants. The combination of ultrastructure expansion microscopy and NHS-ester staining revealed that ERK7-depleted parasites exhibit a dilated apical plasma membrane and an altered positioning of the rhoptries, while electron microscopy images unambiguously highlight the loss of the APR.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Orgánulos/enzimología , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Exocitosis , Quinasas MAP Reguladas por Señal Extracelular/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Orgánulos/genética , Proteínas Protozoarias/genética , Toxoplasma/genética
6.
Commun Biol ; 3(1): 750, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303967

RESUMEN

Phosphatidylinositol (PtdIns) serves as an integral component of eukaryotic membranes; however, its biosynthesis in apicomplexan parasites remains poorly understood. Here we show that Toxoplasma gondii-a common intracellular pathogen of humans and animals-can import and co-utilize myo-inositol with the endogenous CDP-diacylglycerol to synthesize PtdIns. Equally, the parasite harbors a functional PtdIns synthase (PIS) containing a catalytically-vital CDP-diacylglycerol phosphotransferase motif in the Golgi apparatus. Auxin-induced depletion of PIS abrogated the lytic cycle of T. gondii in human cells due to defects in cell division, gliding motility, invasion, and egress. Isotope labeling of the PIS mutant in conjunction with lipidomics demonstrated de novo synthesis of specific PtdIns species, while revealing the salvage of other lipid species from the host cell. Not least, the mutant showed decline in phosphatidylthreonine, and elevation of selected phosphatidylserine and phosphatidylglycerol species, indicating a rerouting of CDP-diacylglycerol and homeostatic inter-regulation of anionic phospholipids upon knockdown of PIS. In conclusion, strategic allocation of own and host-derived PtdIns species to gratify its metabolic demand features as a notable adaptive trait of T. gondii. Conceivably, the dependence of T. gondii on de novo lipid synthesis and scavenging can be exploited to develop new anti-infectives.


Asunto(s)
Fosfatidilinositoles/biosíntesis , Toxoplasma/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Membrana Celular , Citidina Difosfato Diglicéridos/metabolismo , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Homeostasis , Ácidos Indolacéticos , Inositol/metabolismo , Lípidos , Mutación
7.
Artículo en Inglés | MEDLINE | ID: mdl-28730142

RESUMEN

The next-generation gene editing based on CRISPR (clustered regularly interspaced short palindromic repeats) has been successfully implemented in a wide range of organisms including some protozoan parasites. However, application of such a versatile game-changing technology in molecular parasitology remains fairly underexplored. Here, we briefly introduce state-of-the-art in human and mouse research and usher new directions to drive the parasitology research in the years to come. In precise, we outline contemporary ways to embolden existing apicomplexan and kinetoplastid parasite models by commissioning front-line gene-tailoring methods, and illustrate how we can break the enduring gridlock of gene manipulation in non-model parasitic protists to tackle intriguing questions that remain long unresolved otherwise. We show how a judicious solicitation of the CRISPR technology can eventually balance out the two facets of pathogen-host interplay.


Asunto(s)
Apicomplexa/genética , Edición Génica , Kinetoplastida/genética , Infecciones por Protozoos/parasitología , Animales , Apicomplexa/clasificación , Apicomplexa/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Kinetoplastida/clasificación , Kinetoplastida/fisiología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA