Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
New Phytol ; 241(5): 2287-2299, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38126264

RESUMEN

Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.


Les changements globaux accélèrent les processus de colonisation et d'extinction locales d'espèces, aboutissant à des gains ou à des pertes de lignées évolutives uniques. Ces gains et pertes se produisent-ils de manière aléatoire dans l'arbre phylogénétique ? Nous avons mesuré: les changements de diversité phylogénétique; et la parenté phylogénétique des espèces végétales gagnées ou perdues dans 2672 placettes semi-permanentes disposées dans le sous-bois de forêts tempérées d'Europe sur une période moyenne de 40 ans. Une fois corrigée par la richesse spécifique, la diversité phylogénétique a légèrement augmenté au cours du temps dans les différentes placettes. Les espèces perdues ont une plus grande parenté phylogénétique que les espèces gagnées. Les espèces gagnées sont donc issues d'un plus grand nombre de lignées évolutives que les espèces perdues. Certaines lignées ont gagné ou perdu davantage d'espèces que ce qui est prédit par le hasard : les Ericaceae, les Fabaceae et les Orchidaceae ayant davantage perdu, tandis que les Amaranthaceae, les Cyperaceae, et les Rosaceae ont plus gagné. Il n'y a pas de signal phylogénétique des gains ou pertes d'espèces en réponse aux changements de conditions macroclimatiques ou des dépôts atmosphériques d'azote. Alors que les changements globaux d'origine anthropique s'intensifient, les sous-bois des forêts tempérées connaissent des gains et des pertes de certaines lignées évolutives et de certaines stratégies écologiques, sans que la diversité phylogénétique moyenne ne s'en trouve véritablement affectée.


El cambio global ha acelerado las extinciones y colonizaciones a escala local, lo que a menudo ha supuesto pérdidas y ganancias de linajes evolutivos con características únicas. Ahora bien, ¿estas pérdidas y ganancias ocurren aleatoriamente a lo largo de la filogenia? Cuantificamos: los cambios temporales en la diversidad filogenética de las plantas; y la relación filogenética de las especies perdidas y ganadas en 2.672 parcelas de vegetación semipermanente en sotobosques templados europeos y re-muestreadas durante un período promedio de 40 años. Al controlar por las diferencias en la riqueza de especies, la diversidad filogenética aumentó ligeramente con el tiempo y entre parcelas. Además, las especies perdidas dentro de las parcelas exhibieron un mayor grado de relación filogenética que las especies ganadas. Esto implica que las especies ganadas se originaron en un conjunto de linajes evolutivos más diversos que las especies perdidas. Ciertos linajes también perdieron y ganaron más especies de las esperadas aleatoriamente: Ericaceae, Fabaceae y Orchidaceae experimentaron pérdidas y Amaranthaceae, Cyperaceae y Rosaceae mostraron ganancias. Las pérdidas y ganancias de especies no mostraron ninguna señal filogenética significativa en respuesta a los cambios en las condiciones macro-climáticas y la deposición de nitrógeno. A medida que se intensifica el cambio global antropogénico, los sotobosques temperados experimentan pérdidas y ganancias en ramas filogenéticas y estrategias ecológicas específicas, mientras que la diversidad filogenética media general permanece relativamente estable.


Asunto(s)
Biodiversidad , Nitrógeno , Filogenia , Cambio Climático , Bosques , Plantas
2.
Glob Chang Biol ; 27(10): 2113-2127, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33511746

RESUMEN

Many temperate forests are changing in composition due to a combination of changes in land-use, management and climate-related disturbances. Previous research has shown that in some regions these changes frequently favour drought-tolerant tree species. However, the effects of these changes in composition on forest functioning (e.g. productivity) are unclear. We studied 25 years of change in individual tree biomass growth, ingrowth and mortality, and community composition and total plot biomass across 2663 permanent forest plots in Catalonia (NE Spain) comprising 85,220 trees of 59 species. We focused on the relationship between community-level forest productivity and drought tolerance (DT), which was estimated using hydraulic traits as well as biogeographic indicators. We found that there was a small increase (1.6%-3.2% on average) in community-mean DT (DTcwm) during the study period, concurrent with a strong increase (12.4%-19.4% on average) in DT richness (DTric; i.e. trait range). Most importantly, we found that the mean DT was negatively related to forest productivity, which was explained because drought-tolerant tree species have lower tree-level growth. In contrast, DT richness was strongly and positively related to forest productivity, probably because it allowed for a more stable production along wet and dry periods. These results suggest a negative impact of ongoing climate change on forest productivity mediated by functional composition shifts (i.e. selection of drought-tolerant species), and a positive effect of increased DT richness as a consequence of land-use legacies. Such a trend towards functional diversification, although temporary, would increase forests' capacity to resist drought and place them in a better position to face the expected change in climate.


Asunto(s)
Sequías , Árboles , Biomasa , Cambio Climático , España
3.
Glob Chang Biol ; 24(10): 4614-4625, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29851235

RESUMEN

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Asunto(s)
Hormigas/fisiología , Biodiversidad , Animales , Clima , Ecosistema
4.
Ecol Appl ; 28(6): 1481-1493, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885260

RESUMEN

Carbon storage in forests and its ability to offset global greenhouse gas emissions, as well as biodiversity and its capacity to support ecosystem functions and services, are often considered separately in landscape planning. However, the potential synergies between them are currently poorly understood. Identifying the spatial patterns and factors driving their co-occurrence across different climatic zones is critical to more effectively conserve forest ecosystems at the regional level. Here, we integrated information of National Forest Inventories and Breeding Bird Atlases across Europe and North America (Spain and Quebec, respectively), covering five subclimates (steppe, dry Mediterranean, humid Mediterranean, boreal, and temperate). In particular, this study aimed to (1) determine the spatial patterns of both forest carbon stocks and biodiversity (bird richness, tree richness, and overall biodiversity) and the factors that influence them; (2) establish the relationships between forest carbon stocks and biodiversity; and (3) define and characterize the areas of high (hotspots) and low (coldspots) values of carbon and biodiversity, and ultimately quantify their spatial overlap. Our results show that the factors affecting carbon and biodiversity vary between regions and subclimates. The highest values of carbon and biodiversity were found in northern Spain (humid Mediterranean subclimate) and southern Quebec (temperate subclimate) where there was more carbon as climate conditions were less limiting. High density and structural diversity simultaneously favored carbon stocks, tree, and overall biodiversity, especially in isolated and mountainous areas, often associated with steeper slopes and low accessibility. In addition, the relationship between carbon stocks and biodiversity was positive in both regions and all subclimates, being stronger where climate is a limiting factor for forest growth. The spatial overlap between hotspots of carbon and biodiversity provides an excellent opportunity for landscape planning to maintain carbon stocks and conserve biodiversity. The variables positively affecting carbon and biodiversity were also driving the hotspots of both carbon and biodiversity, emphasizing the viability of "win-win" solutions. Our results highlight the need to jointly determine the spatial patterns of ecosystem services and biodiversity for an effective and sustainable planning of forest landscapes that simultaneously support conservation and mitigate climate change.


Asunto(s)
Biodiversidad , Aves , Ciclo del Carbono , Clima , Bosques , Animales , Quebec , España , Árboles
5.
Glob Chang Biol ; 22(12): 3984-3995, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27286408

RESUMEN

Over the past century, major shifts in the geographic distribution of tree species have occurred in response to changes in land use and climate. We analyse species distribution and abundance from about 33 000 forest inventory plots in Spain sampled twice over a period of 10-12 years. We show a dominance of range contraction (extinction), and demographic decline over range expansion (colonization), with seven of 11 species exhibiting extinction downhill of their distribution. Contrary to expectations, these dynamics are not always consistent with climate warming over the study period, but result from legacies in forest structure due to past land use change and fire occurrence. We find that these changes have led to the expansion of broadleaf species (i.e. family Fagaceae) over areas formerly dominated by conifer species (i.e. family Pinaceae), due to the greater capacity of the former to respond to most disturbances and their higher competitive ability. This recent and rapid transition from conifers to broadleaves has important implications in forest dynamics and ecosystem services they provide. The finding raises the question as to whether the increasing dominance of relatively drought-sensitive broadleaf species will diminish resilience of Mediterranean forests to very likely drier conditions in the future.


Asunto(s)
Biodiversidad , Bosques , Árboles/clasificación , Clima , España
6.
Ann Bot ; 118(2): 249-57, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27325897

RESUMEN

BACKGROUND AND AIMS: Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. METHODS: We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant-pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. KEY RESULTS: We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. CONCLUSIONS: The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant-pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant-pollinator associations.


Asunto(s)
Abejas/fisiología , Flores/anatomía & histología , Fenómenos Fisiológicos de las Plantas , Plantas/anatomía & histología , Polinización/fisiología , Animales , Color , Flores/fisiología , Fenotipo
7.
Ecology ; 96(10): 2781-93, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26649398

RESUMEN

The major factors explaining ecological variation in plants have been widely discussed over the last decade thanks to numerous studies that have examined the covariation that exists between pairs of traits. However, multivariate relationships among traits remain poorly characterized in animals. In this study, we aimed to identify the main multivariate trait dimensions that explain variance in important functional traits related to resource exploitation in ants. To this end, we created a large ant trait database. This database includes information on 11 traits that are important in ant resource exploitation; data were obtained for 150 European species found in different biomes. First, we examined the pairwise correlations between the traits included in the database. Second, we used multivariate analyses to identify potential trait dimensions. Our study shows that, to a great extent, resource exploitation strategies align along two main trait dimensions. The first dimension emerged in both the overall and group-specific analyses, where it accounted for the same pairwise trait correlations. The second dimension was more variable, as species were grouped by levels of taxonomy, habitat, and climate. These two dimensions included most of the significant pairwise trait correlations, thus highlighting that complementarity, but also redundancy, exists among different pairs of traits. The first dimension was associated with behavioral dominance: dominance was associated with large colony size, presence of multiple nests per colony, worker polymorphism, and a collective foraging 'strategy. The second dimension was associated with resource partitioning along dietary and microhabitat lines: it ranged from species that consume liquid foods, engage in group foraging, and mainly nest in the vegetation to species that consume insects and seeds, engage in individual foraging, and demonstrate strictly diurnal activity. Our findings establish a proficient ecological trait-based animal research that minimizes the number of traits to be measured while maximizing the number of relevant trait dimensions. Overall, resource exploitation in animals might be framed by behavioral dominance, foraging strategy, diet, and nesting habitat; the position of animal species within this trait space could provide relevant information about their distribution and abundance, for today as well as under future global change scenarios.


Asunto(s)
Hormigas/fisiología , Conducta Alimentaria/fisiología , Animales , Hormigas/genética , Europa (Continente) , Modelos Biológicos , Análisis Multivariante , Filogenia , Especificidad de la Especie
8.
New Phytol ; 204(1): 105-115, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24985503

RESUMEN

Plant function requires effective mechanisms to regulate water transport at a variety of scales. Here, we develop a new theoretical framework describing plant responses to drying soil, based on the relationship between midday and predawn leaf water potentials. The intercept of the relationship (Λ) characterizes the maximum transpiration rate per unit of hydraulic transport capacity, whereas the slope (σ) measures the relative sensitivity of the transpiration rate and plant hydraulic conductance to declining water availability. This framework was applied to a newly compiled global database of leaf water potentials to estimate the values of Λ and σ for 102 plant species. Our results show that our characterization of drought responses is largely consistent within species, and that the parameters Λ and σ show meaningful associations with climate across species. Parameter σ was ≤1 in most species, indicating a tight coordination between the gas and liquid phases of water transport, in which canopy transpiration tended to decline faster than hydraulic conductance during drought, thus reducing the pressure drop through the plant. The quantitative framework presented here offers a new way of characterizing water transport regulation in plants that can be used to assess their vulnerability to drought under current and future climatic conditions.


Asunto(s)
Plantas/metabolismo , Suelo , Agua/metabolismo , Transporte Biológico , Sequías , Modelos Lineales , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Árboles , Xilema/fisiología
9.
J Anim Ecol ; 83(6): 1398-408, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24720700

RESUMEN

Understanding species distributions and diversity gradients is a central challenge in ecology and requires prior knowledge of the functional traits mediating species' survival under particular environmental conditions. While the functional ecology of plants has been reasonably well explored, much less is known about that of animals. Ants are among the most diverse, abundant and ecologically significant organisms on earth, and they perform a great variety of ecological functions. In this study, we analyse how the functional species traits present in ant communities vary along broad gradients in climate, productivity and vegetation type in the south-western Mediterranean. To this end, we compiled one of the largest animal databases to date: it contains information on 211 local ant communities (including eight climate variables, productivity, and vegetation type) and 124 ant species, for which 10 functional traits are described. We used traits that characterize different dimensions of the ant functional niche with respect to morphology, life history and behaviour at both individual and colony level. We calculated two complementary functional trait community indices ('trait average' and 'trait dissimilarity') for each trait, and we analysed how they varied along the three different gradients using generalized least squares models that accounted for spatial autocorrelation. Our results show that productivity, vegetation type and, to a lesser extent, each climate variable per se might play an important role in shaping the occurrence of functional species traits in ant communities. Among the climate variables, temperature and precipitation seasonality had a much higher influence on functional responses than their mean values, whose effects were almost lacking. Our results suggest that strong relationships might exist between the abiotic environment and the distribution of functional traits among south-western Mediterranean ant communities. This finding indicates that functional traits may modulate the responses of ant species to the environment. Since these traits act as the link between species distributions and the environment, they could potentially be used to predict community changes under future global change scenarios.


Asunto(s)
Distribución Animal , Hormigas/fisiología , Clima , Ambiente , Animales , España
10.
Oecologia ; 175(4): 1337-48, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24850418

RESUMEN

Although intraspecific trait variability is an important component of species ecological plasticity and niche breadth, its implications for community and functional ecology have not been thoroughly explored. We characterized the intraspecific functional trait variability of Scots pine (Pinus sylvestris) in Catalonia (NE Spain) in order to (1) compare it to the interspecific trait variability of trees in the same region, (2) explore the relationships among functional traits and the relationships between them and stand and climatic variables, and (3) study the role of functional trait variability as a determinant of radial growth. We considered five traits: wood density (WD), maximum tree height (H max), leaf nitrogen content (Nmass), specific leaf area (SLA), and leaf biomass-to-sapwood area ratio (B L:A S). A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia (IEFC), including data from 406 plots. Intraspecific trait variation was substantial for all traits, with coefficients of variation ranging between 8% for WD and 24% for B L:A S. In some cases, correlations among functional traits differed from those reported across species (e.g., H max and WD were positively related, whereas SLA and Nmass were uncorrelated). Overall, our model accounted for 47% of the spatial variability in Scots pine radial growth. Our study emphasizes the hierarchy of factors that determine intraspecific variations in functional traits in Scots pine and their strong association with spatial variability in radial growth. We claim that intraspecific trait variation is an important determinant of responses of plants to changes in climate and other environmental factors, and should be included in predictive models of vegetation dynamics.


Asunto(s)
Pinus sylvestris/fisiología , Biomasa , Clima , Ecología , Nitrógeno , Fenotipo , Hojas de la Planta/fisiología , España , Especificidad de la Especie , Madera
11.
Oecologia ; 170(2): 489-500, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22476711

RESUMEN

For most animal and plant species, life traits strongly affect their species-specific role, function or position within ecological communities. Previous studies on ant communities have mostly focused on the role of dominant species and the outcome of interspecific interactions. However, life traits of ant species have seldom been considered within a community framework. This study (1) analyses life traits related to ecological and behavioural characteristics of dominant and subordinate ant species from 13 sites distributed throughout the Iberian Peninsula, (2) determines how similar the ant species are within each of the two levels of the dominance hierarchy, and (3) establishes the distribution patterns of these different groups of species along environmental gradients. Our results showed that the differences between dominants and subordinates fall into two main categories: resource exploitation and thermal tolerance. Dominant species have more populated colonies and defend food resources more fiercely than subordinates, but they display low tolerance to high temperatures. We have identified different assemblages of species included within each of these two levels in the dominance hierarchy. The distribution of these assemblages varied along the environmental gradient, shifting from dominant Dolichoderinae and cryptic species in moist areas, to dominant Myrmicinae and hot climate specialists mainly in open and hot sites. We have been able to identify a set of life traits of the most common Iberian ant species that has enabled us to characterise groups of dominant and subordinate species. Although certain common features within the groups of both dominants and subordinates always emerge, other different features allow for differentiating subgroups within each of these groups. These different traits allow the different subgroups coping with particular conditions across environmental gradients.


Asunto(s)
Hormigas/crecimiento & desarrollo , Conducta Social , Animales , Hormigas/fisiología , Ecología , Alimentos , Dinámica Poblacional , Reproducción , España , Temperatura
12.
Ecol Appl ; 21(4): 1162-72, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21774421

RESUMEN

The demographic rates of tree species typically show large spatial variation across their range. Understanding the environmental factors underlying this variation is a key topic in forest ecology, with far-reaching management implications. Scots pine (Pinus sylvestris L.) covers large areas of the Northern Hemisphere, the Iberian Peninsula being its southwestern distribution limit. In recent decades, an increase in severe droughts and a densification of forests as a result of changes in forest uses have occurred in this region. Our aim was to use climate and stand structure data to explain mortality and growth patterns of Scots pine forests across the Iberian Peninsula. We used data from 2392 plots dominated by Scots pine, sampled for the National Forest Inventory of Spain. Plots were sampled from 1986 to 1996 (IFN2) and were resampled from 1997 to 2007 (IFN3), allowing for the calculation of growth and mortality rates. We fitted linear models to assess the response of growth and mortality rates to the spatial variability of climate, climatic anomalies, and forest structure. Over the period of approximately 10 years between the IFN2 and IFN3, the amount of standing dead trees increased 11-fold. Higher mortality rates were related to dryness, and growth was reduced with increasing dryness and temperature, but results also suggested that effects of climatic stressors were not restricted to dry sites only. Forest structure was strongly related to demographic rates, suggesting that stand development and competition are the main factors associated with demography. In the case of mortality, forest structure interacted with climate, suggesting that competition for water resources induces tree mortality in dry sites. A slight negative relationship was found between mortality and growth, indicating that both rates are likely to be affected by the same stress factors. Additionally, regeneration tended to be lower in plots with higher mortality. Taken together, our results suggest a large-scale self-thinning related to the recent densification of Scots pine forests. This process appears to be enhanced by dry conditions and may lead to a mismatch in forest turnover. Forest management may be an essential adaptive tool under the drier conditions predicted by most climate models.


Asunto(s)
Clima , Ecosistema , Pinus sylvestris/fisiología , Densidad de Población , Dinámica Poblacional , España , Factores de Tiempo
13.
Sci Rep ; 11(1): 3280, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558646

RESUMEN

Exploring shifts in the climatic niches of introduced species can provide significant insight into the mechanisms underlying the invasion process and the associated impacts on biodiversity. We aim to test the phylogenetic signal hypothesis in native and introduced species in Europe by examining climatic niche similarity. We examined data from 134 ant species commonly found in western Europe; 130 were native species, and 4 were introduced species. We characterized their distribution patterns using species records from different databases, determined their phylogenetic relatedness, and tested for a phylogenetic signal in their optimal climatic niches. We then compared the introduced species' climatic niches in Europe with their climatic niches in their native ranges and with the climatic niches of their closest relative species in Europe. We found a strong phylogenetic signal in the optimal climatic niches of the most common ant species in Europe; however, this signal was weak for the main climatic variables that affect the distributions of introduced versus native species. Also, introduced species occupied different climatic niches in Europe than in their native ranges; furthermore, their European climatic niches did not resemble those of their closest relative species in Europe. We further discovered that there was not much concordance between the climatic niches of introduced species in their native ranges and climatic conditions in Europe. Our findings suggest that phylogenetics do indeed constrain shifts in the climatic niches of native European ant species. However, introduced species would not face such constraints and seemed to occupy relatively empty climatic niches.

14.
Sci Adv ; 7(33)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34389532

RESUMEN

Fire plays a dominant role in deforestation, particularly in the tropics, but the relative extent of transformations and influence of fire frequency on eventual forest loss remain unclear. Here, we analyze the frequency of fire and its influence on postfire forest trajectories between 2001 and 2018. We account for ~1.1% of Latin American forests burnt in 2002-2003 (8,465,850 ha). Although 40.1% of forests (3,393,250 ha) burned only once, by 2018, ~48% of the evergreen forests converted to other, primarily grass-dominated uses. While greater fire frequency yielded more transformation, our results reveal the staggering impact of even a single fire. Increasing fire frequency imposes greater risks of irreversible forest loss, transforming forests into ecosystems increasingly vulnerable to degradation. Reversing this trend is indispensable to both mitigate and adapt to climate change globally. As climate change transforms fire regimes across the region, key actions are needed to conserve Latin American forests.

15.
Biol Lett ; 6(6): 769-72, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-20462885

RESUMEN

Tropical forest canopies house most of the globe's diversity, yet little is known about global patterns and drivers of canopy diversity. Here, we present models of ant species density, using climate, abundance and habitat (i.e. canopy versus litter) as predictors. Ant species density is positively associated with temperature and precipitation, and negatively (or non-significantly) associated with two metrics of seasonality, precipitation seasonality and temperature range. Ant species density was significantly higher in canopy samples, but this difference disappeared once abundance was considered. Thus, apparent differences in species density between canopy and litter samples are probably owing to differences in abundance-diversity relationships, and not differences in climate-diversity relationships. Thus, it appears that canopy and litter ant assemblages share a common abundance-diversity relationship influenced by similar but not identical climatic drivers.


Asunto(s)
Hormigas/fisiología , Modelos Biológicos , Animales , Ecosistema , Modelos Lineales , Densidad de Población , Especificidad de la Especie , Árboles , Clima Tropical , Tiempo (Meteorología)
16.
PLoS One ; 15(2): e0228625, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32074138

RESUMEN

Functional trait-based approaches are increasingly used for studying the processes underlying community assembly. The relative influence of different assembly rules might depend on the spatial scale of analysis, the environmental context and the type of functional traits considered. By using a functional trait-based approach, we aim to disentangle the relative role of environmental filtering and interspecific competition on the structure of European ant communities according to the spatial scale and the type of trait considered. We used a large database on ant species composition that encompasses 361 ant communities distributed across the five biogeographic regions of Europe; these communities were composed of 155 ant species, which were characterized by 6 functional traits. We then analysed the relationship between functional divergence and co-occurrence between species pairs across different spatial scales (European, biogeographic region and local) and considering different types of traits (ecological tolerance and niche traits). Three different patterns emerged: negative, positive and non-significant regression coefficients suggest that environmental filtering, competition and neutrality are at work, respectively. We found that environmental filtering is important for structuring European ant communities at large spatial scales, particularly at the scale of Europe and most biogeographic regions. Competition could play a certain role at intermediate spatial scales where temperatures are more favourable for ant productivity (i.e. the Mediterranean region), while neutrality might be especially relevant in spatially discontinuous regions (i.e. the Alpine region). We found that no ecological mechanism (environmental filtering or competition) prevails at the local scale. The type of trait is especially important when looking for different assembly rules, and multi-trait grouping works well for traits associated with environmental responses (tolerance traits), but not for traits related to resource exploitation (niche traits). The spatial scale of analysis, the environmental context and the chosen traits merit special attention in trait-based analyses of community assembly mechanisms.


Asunto(s)
Adaptación Fisiológica , Hormigas/fisiología , Biodiversidad , Conducta Social , Animales , Hormigas/genética , Evolución Biológica
17.
Ecol Lett ; 12(4): 324-33, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19292793

RESUMEN

Although many taxa show a latitudinal gradient in richness, the relationship between latitude and species richness is often asymmetrical between the northern and southern hemispheres. Here we examine the latitudinal pattern of species richness across 1003 local ant assemblages. We find latitudinal asymmetry, with southern hemisphere sites being more diverse than northern hemisphere sites. Most of this asymmetry could be explained statistically by differences in contemporary climate. Local ant species richness was positively associated with temperature, but negatively (although weakly) associated with temperature range and precipitation. After contemporary climate was accounted for, a modest difference in diversity between hemispheres persisted, suggesting that factors other than contemporary climate contributed to the hemispherical asymmetry. The most parsimonious explanation for this remaining asymmetry is that greater climate change since the Eocene in the northern than in the southern hemisphere has led to more extinctions in the northern hemisphere with consequent effects on local ant species richness.


Asunto(s)
Hormigas/fisiología , Biodiversidad , Clima , Animales , Hormigas/genética , Evolución Biológica
18.
Ecology ; 89(3): 805-17, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18459343

RESUMEN

Temporally variable production of seed crops by perennial plants (masting) has been hypothesized to be a valuable mechanism in the reduction of seed predation by satiating and starving seed consumers. To achieve these benefits, coexisting species subjected to the same predator would benefit from a similar pattern of seeding fluctuation over time that could lead to a reduction in predation at the within-species level. We tested for the existence of an environmental factor enforcing synchrony in acorn production in two sympatric Mediterranean oaks (Quercus ilex and Q. humilis) and the consequences on within-species and between-species acorn predation, by monitoring 15 mixed forests (450 trees) over seven years. Acorn production in Q. ilex and Q. humilis was highly variable among years, with high population variability (CVp) values. The two species exhibited a very different pattern across years in their initial acorn crop size (sum of aborted, depredated, and sound acorns). Nevertheless, interannual differences in summer water stress modified the likelihood of abortion during acorn ripening and enforced within- and, particularly, between-species synchrony and population variability in acorn production. The increase in CVp from initial to mature acorn crop (after summer) accounted for 33% in Q. ilex, 59% in Q. humilis, and 60% in the two species together. Mean yearly acorn pre-dispersal predation by invertebrates was considerably higher in Q. humilis than in Q. ilex. Satiation and starvation of predators was recorded for the two oaks, and this effect was increased by the year-to-year variability in the size of the acorn crop of the two species combined. Moreover, at a longer time scale (over seven years), we observed a significant reduction in the mean proportion of acorns depredated for each oak and the variability in both species' acorn production combined. Therefore, our results demonstrate that similar patterns of seeding fluctuation over time in coexisting species mediated by an environmental cue (summer drought) may contribute to the reduction of the impact of seed predation at a within-species level. Future research should be aimed at addressing whether this process could be a factor assisting in the coexistence of Q. ilex and Q. humilis.


Asunto(s)
Desastres , Conducta Alimentaria/fisiología , Modelos Biológicos , Quercus/fisiología , Semillas/crecimiento & desarrollo , Animales , Plantas Comestibles , Dinámica Poblacional , Quercus/crecimiento & desarrollo , Lluvia , Especificidad de la Especie
19.
PeerJ ; 3: e1241, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26468433

RESUMEN

We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a better indicator of community assembly processes than phylogenetic diversity.

20.
Oecologia ; 113(4): 577-583, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28308038

RESUMEN

Camponotus foreli (Emery) and Cataglyphis iberica (Emery) are two sympatric, subordinate ant species that have been found to fight in attacks that usually conclude with the death of many workers of both species and with nest abandonment by C. iberica. These harassment episodes have been observed in two different areas and over many years of study. No such attacks of C. foreli were observed in the study areas against any other ant species, nor did any other ants attack C. iberica nests, and laboratory confrontations confirmed this specificity. These attacks neither eliminated C. iberica colonies, nor distanced them from C. foreli nests. Moreover, there was no real competition for food between the species: in an experiment where all C. iberica colonies were eliminated from an area, rates of prey and liquid food collection by C. foreli nests in the exclusion zone were similar to those found in the control zone with C. iberica, and the activity rhythms of C. foreli did not change in the absence of C. iberica. The hypothesis of competition for a nest site is more consistent. Both in the laboratory and the field, the most frequent outcome of these aggressive interactions was the occupation of the C. iberica nest by C. foreli. This behavior may be advantageous for C. foreli, because it is much less skilful at excavating than C. iberica. One of the chief concerns of this study is to show that such interference interactions, typical especially of dominant, very aggressive species, are also found between subordinate, apparently nonaggressive species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA