Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Respir Care ; 63(10): 1214-1222, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30018177

RESUMEN

BACKGROUND: Standard mechanical insufflation-exsufflation (MI-E) therapy is applied with fast insufflation-exsufflation pressures to achieve high peak expiratory flows (PEF) and assist airway clearance. No attention is given to the resultant high peak inspiratory flows (PIF), although it may impair secretion removal. It has been proposed that an expiratory flow bias (ie, PEF higher than PIF) might be the key determinant for mucus clearance instead of the PEF alone. We examined the effects of 2 MI-E maneuvers, standard versus optimized, with fast and slow insufflation, respectively, along with different MI-E pressure settings on secretion displacement in 3 lung-impedance scenarios that simulated a patient on mechanical ventilation. METHODS: The MI-E device was connected to a lung model that simulated a patient on mechanical ventilation. Known quantities of mucus simulant were injected into the system and exposed to various MI-E ventilation conditions. Mucus movement was examined with image-analysis software. RESULTS: The optimized MI-E maneuver resulted in a much lower PIF (37.5 L/min [interquartile range, 24.9-47.9 L/min] vs 101.8 L/min [interquartile range, 89.1-115.7 L/min], P < .001). Consequently, the expiratory flow bias, expressed by PEF:PIF and the PEF-PIF difference, was much higher in the optimized maneuver. The higher expiratory flow bias in the optimized maneuver displaced the mucus outward, with a difference of 2.6 cm compared with the standard maneuver. Multivariate analysis revealed that the type of maneuver (optimized vs standard), PEF-PIF difference and MI-E pressure gradient were significantly correlated with mucus displacement (r2 = 0.817, P < .001), whereas the PEF was not. PEF:PIF and the PEF-PIF difference were lower in the obstructive lung scenario when compared with the restrictive and normal lung scenarios. CONCLUSIONS: The optimized MI-E maneuver, applied with slow insufflation, resulted in a higher expiratory flow bias, which made the therapy more effective at moving mucus outward, compared with the standard MI-E maneuver, typically applied with fast insufflation.


Asunto(s)
Manejo de la Vía Aérea/métodos , Insuflación , Moco , Tos/fisiopatología , Humanos , Pulmón/fisiopatología , Ápice del Flujo Espiratorio , Respiración Artificial , Fenómenos Fisiológicos Respiratorios
2.
PLoS One ; 13(2): e0191787, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29432468

RESUMEN

INTRODUCTION: Manual hyperinflation (MH), a maneuver applied in mechanically ventilated patients to facilitate secretion removal, has large variation in its performance. Effectiveness of MH is usually evaluated by its capacity to generate an expiratory flow bias. The aim of this study was to compare the effects of MH-and its resulting flow bias-applied according to clinical practice versus according to expert recommendation on mucus movement in a lung model simulating a mechanically ventilated patient. METHODS: Twelve physiotherapists were asked to apply MH, using a self-inflating manual resuscitator, to a test lung as if to remove secretions under two conditions: according to their usual clinical practice (pre-instruction phase) and after verbal instruction to perform MH according to expert recommendation was given (post-instruction phase). Mucus simulant movement was measured with a photodensitometric technique. Peak inspiratory flow (PIF), peak inspiratory pressure (PIP), inspiratory time (TINSP), tidal volume (VT) and peak expiratory flow (PEF) were measured continuously. RESULTS: It was found that MH performed post-instruction delivered a smaller VT (643.1 ± 57.8 ml) at a lower PIP (15.0 ± 1.5 cmH2O), lower PIF (38.0 ± 9.6 L/min), longer TINSP (1.84 ±0.54 s) and lower PEF (65.4 ± 6.7L/min) compared to MH pre-instruction. In the pre-instruction phase, MH resulted in a mean PIF/PEF ratio of 1.73 ± 0.38 and mean PEF-PIF difference of -54.6 ± 28.3 L/min, both out of the range for secretion removal. In the post-instruction phase both indexes were in the adequate range. Consequently, the mucus simulant was moved outward when MH was applied according to expert recommendation and towards the test lung when it was applied according to clinical practice. CONCLUSIONS: Performance of MH during clinical practice with PIF higher than PEF was ineffective to clear secretion in a lung model simulating a mechanically ventilated patient. In order to remove secretion, MH should result in an adequate expiratory flow bias.


Asunto(s)
Moco , Modalidades de Fisioterapia , Respiración Artificial/efectos adversos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA