Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Environ Manage ; 325(Pt B): 116560, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279772

RESUMEN

Aerated compost tea (ACT) contains soluble humic substances (SHS) that are expected to alter the dynamics and ecotoxicity of Cu in soil. This study investigated the efficiency of ACT in enhancing the mobility and phytoextraction of Cu in vineyard soil. Crimson clover (Trifolium incarnatum L.) was grown on a vineyard soil at three concentrations of Cu (90, 261 and 432 mg kg-1), and supplied (or not) with ACT, then sampled after 56 days to determine the amount of Cu phytoextracted. Soil was extracted with 0.01 M KCl and potentiometric analyses were performed to measure the impact of ACT on the speciation of Cu in the extraction solution. ACT was found to increase the mobility of Cu in the soil by a factor of 3-14 depending on the soil Cu content and on the soil extraction date. The increase in Cu mobility was associated with an increase in absorbance at 254 nm and with a decrease in the free ionic fraction of Cu in the KCl extract, suggesting that Cu was mainly mobilized by the SHS present in the compost tea, and through a ligand-controlled dissolution process. ACT increased Cu phytoextraction at Cu90 and Cu261 by on average 80% thanks to its positive impact on plant growth, and on Cu accumulation in plant shoots, whereas it reduced Cu phytoextraction at Cu432 due to its deleterious effect on plant growth at this soil Cu content. ACT is thus an efficient way to increase the phytoavailability of Cu in soil, but probably should not be used in vineyard soils that are highly contaminated by Cu. To obtain Cu phytoextraction yields in line with the needs of the wine sector, the use of ACT needs to be associated with the cultivation of a Cu-accumulating plant.


Asunto(s)
Compostaje , Contaminantes del Suelo , Suelo , Cobre/análisis , Contaminantes del Suelo/análisis , Granjas , Biodegradación Ambiental ,
2.
PLoS Genet ; 8(7): e1002814, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22807689

RESUMEN

As sessile organisms, plants have to cope with diverse environmental constraints that may vary through time and space, eventually leading to changes in the phenotype of populations through fixation of adaptive genetic variation. To fully comprehend the mechanisms of evolution and make sense of the extensive genotypic diversity currently revealed by new sequencing technologies, we are challenged with identifying the molecular basis of such adaptive variation. Here, we have identified a new variant of a molybdenum (Mo) transporter, MOT1, which is causal for fitness changes under artificial conditions of both Mo-deficiency and Mo-toxicity and in which allelic variation among West-Asian populations is strictly correlated with the concentration of available Mo in native soils. In addition, this association is accompanied at different scales with patterns of polymorphisms that are not consistent with neutral evolution and show signs of diversifying selection. Resolving such a case of allelic heterogeneity helps explain species-wide phenotypic variation for Mo homeostasis and potentially reveals trade-off effects, a finding still rarely linked to fitness.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Arabidopsis/genética , Arabidopsis , Molibdeno/metabolismo , Alelos , Proteínas de Transporte de Anión/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/fisiología , Flujo Genético , Heterogeneidad Genética , Variación Genética , Haplotipos , Molibdeno/química , Fenotipo , Polimorfismo Genético , Suelo/química
3.
Chemosphere ; 329: 138604, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37028730

RESUMEN

The use of cover crops (CCs) in viticulture is threatened by the contamination of vineyard soils by copper (Cu). This study investigated the response of CCs to increased concentrations of Cu in soil as a way to assess their sensitivity to Cu and their Cu phytoextraction ability. Our first experiment used microplots to compare the effect of increasing soil Cu content from 90 to 204 mg kg-1 on the growth, Cu accumulation level, and elemental profile of six CC species (Brassicaceae, Fabaceae and Poaceae) commonly sown in vineyard inter-row. The second experiment quantified the amount of Cu exported by a mixture of CCs in vineyards with contrasted soil characteristics. Experiment 1 showed that increasing the soil Cu content from 90 to 204 mg kg-1 was detrimental to the growth of Brassicaceae and faba bean. The elemental composition of plant tissues was specific to each CC and almost no change in composition resulted from the increase in soil Cu content. Crimson clover was the most promising CC for Cu phytoextraction as it produced the most aboveground biomass, and, along with faba bean, accumulated the highest concentration of Cu in its shoots. Experiment 2 showed that the amount of Cu extracted by CCs depended on the availability of Cu in the topsoil and CC growth in the vineyard, and ranged from 25 to 166 g per hectare. Taken together, these results emphasize the fact that the use of CCs in vineyards may be jeopardised by the contamination of soils by Cu, and that the amount of Cu exported by CCs is not sufficiently high to offset the amount of Cu supplied by Cu-based fungicides. Recommendations are provided for maximizing the environmental benefits provided by CCs in Cu-contaminated vineyard soils.


Asunto(s)
Brassicaceae , Contaminantes del Suelo , Cobre/análisis , Granjas , Suelo , Contaminantes del Suelo/análisis , Productos Agrícolas
4.
Life (Basel) ; 13(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37511854

RESUMEN

Allopolyploidy is considered as a principal driver that shaped angiosperms' evolution in terms of diversification and speciation. Despite the unexpected high frequency of polyploidy that was recently discovered in the coniferous genus Juniperus, little is known about the origin of these polyploid taxa. Here, we conducted the first study devoted to deciphering the origin of the only hexaploid taxon in Juniperus along with four of its closely related tetraploid taxa using AFLP markers with four primers combinations. Phylogenetic analysis revealed that the 10 studied species belong to 2 major clusters. J. foetidissima appeared to be more related to J. thurifera, J. sabina, and J. chinensis. The Bayesian clustering analysis showing a slight variation in genetic admixture between the studied populations of J. foetidissima, suggesting an allopolyploid origin of this species involving J. thurifera and J. sabina lineages, although a purely autopolyploidy origin of both J. thurifera and J. foetidissima cannot be ruled out. The admixed genetic pattern revealed for J. seravschanica showed that the tetraploid cytotypes of this species originated from allopolyploidy, whereas no clear evidence of hybridization in the origin of the tetraploid J. thurifera and J. chinensis was detected. This study provides first insights into the polyploidy origin of the Sabina section and highlights the potential implication of allopolyploidy in the evolution of the genus Juniperus. Further analyses are needed for a more in-depth understanding of the evolutionary scenarios that produced the observed genetic patterns.

5.
Plants (Basel) ; 11(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35448734

RESUMEN

Post-anthesis phosphorus (P) uptake and the remobilization of the previously acquired P are the principal sources of grain P nutrition in wheat. However, how the acquired P reaches the grains and its partitioning at the whole plant level remain poorly understood. Here, the temporal dynamics of the newly acquired P in durum wheat organs and its allocation to grain were examined using pulse-chase 32P-labeling experiments at 5 and 14 days after anthesis. Durum wheat plants were grown hydroponically under high and low P supplies. Each labeling experiment lasted for 24 h. Plants were harvested 24, 48, and 96 h after labeling. Low and high P treatments significantly affected the allocation of the newly acquired P at the whole plant level. Three days (96 h) after the first 32P-labeling, 8% and 4% of the newly acquired P from exogenous solution were allocated to grains, 73% and 55% to the remainder aboveground organs, and 19% and 41% to the roots at low and high P supplies, respectively. Three days after the second labeling, the corresponding values were 48% and 20% in grains, 44% and 53% in the remainder aboveground organs, and 8% and 27% in roots at low and high P supplies, respectively. These results reveal that the dynamics of P allocation to grain was faster in plants grown under low P supply than under high supply. However, the obtained results also indicate that the origin of P accumulated in durum wheat grains was mainly from P remobilization with little contribution from post-anthesis P uptake. The present study emphasizes the role of vegetative organs as temporary storage of P taken up during the grain filling period before its final allocation to grains.

6.
Front Plant Sci ; 13: 873471, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574119

RESUMEN

The genus Ramonda includes three Paleoendemic and Tertiary relict species that survived in refugial habitats of the Balkan Peninsula (R. nathaliae and R. serbica) and the Iberian Peninsula (R. myconi). They are all "resurrection plants," a rare phenomenon among flowering plants in Europe. Ramonda myconi and R. nathaliae are diploids (2n = 2x = 48), while R. serbica is a hexaploid (2n = 6x = 144). The two Balkan species occur in sympatry in only two localities in eastern Serbia, where tetraploid potential hybrids (2n = 4x = 96) were found. This observation raised questions about the existence of gene flow between the two species and, more generally, about the evolutionary processes shaping their genetic diversity. To address this question, genetic markers (AFLP) and an estimate of genome size variation were used in a much larger sample and at a larger geographic scale than previously. The combination of AFLP markers and genome size results suggested ongoing processes of interspecific and interploidy hybridization in the two sites of sympatry. The data also showed that interspecific gene flow was strictly confined to sympatry. Elsewhere, both Ramonda species were characterized by low genetic diversity within populations and high population differentiation. This is consistent with the fact that the two species are highly fragmented into small and isolated populations, likely a consequence of their postglacial history. Within sympatry, enormous variability in cytotypes was observed, exceeding most reported cases of mixed ploidy in complex plant species (from 2x to >8x). The AFLP profiles of non-canonical ploidy levels indicated a diversity of origin pathways and that backcrosses probably occur between tetraploid interspecific hybrids and parental species. The question arises whether this diversity of cytotypes corresponds to a transient situation. If not, the question arises as to the genetic and ecological mechanisms that allow this diversity to be maintained over time.

7.
PhytoKeys ; 213: 35-66, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762245

RESUMEN

An accurate taxa delimitation, based on a full understanding of evolutionary processes involved in taxa differentiation, can be gained from a combination of ecological, morphological, and molecular approaches. The taxonomy of Magnoliasubsect.Talauma in Cuba has long been debated and exclusively based on traditional morphological study of a limited number of individuals. A more accurate description of leaf morphology variation using geometric morphometrics combined with genetic data could bring consistency to taxa delimitation in this group. Leaf samples for the morphological (243) and genetic (461) analyses were collected throughout the entire distribution range. The variability of each taxon was analyzed through multivariate and geometric morphometry, and 21 genetic markers (SSR). The observed leaf morphological variability was higher than previously described. Morphological and genetic classifications were highly congruent in two out of four taxa. Our data brought evidence that Magnoliaorbiculata can be considered a true species with very clear genetic and morphological limits. The main taxonomic issues concern the north-eastern Cuban populations of Magnoliasubsect.Talauma. The data supported the existence of two clear groups: corresponding mainly to M.minor-M.oblongifolia and T.ophiticola. However, these two groups cannot be considered fully delimited since genetic markers provided evidence of genetic admixture between them. Due to the likely absence of, at least strong, reproductive barriers between these three taxa, we propose therefore to consider them as a species complex.

8.
J Agric Food Chem ; 70(26): 8085-8096, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730681

RESUMEN

Durum wheat is one of the cereal crops that accumulates the highest concentrations of cadmium (Cd) and deoxynivalenol (DON) mycotoxin in its grains, thereby affecting the safety of products made of durum wheat grains (pasta and semolina). This study investigates in planta the interaction between Cd and Fusarium graminearum, the main causal agent of DON accumulation in grains. A pot experiment was designed to characterize the response of durum wheat to F. graminearum infection at three levels of Cd exposure: 0.1, 2, and 10 mg Cd kg-1 soil, which showed that the accumulation of Cd and DON resulted from interacting processes. On the one hand, plant exposure to Cd reduced the concentration of DON in grains. The mitigating effect of Cd on DON accumulation was attributed to the restricted growth of F. graminearum, which could result from enhanced plant resistance to the fungal pathogen induced by Cd exposure. On the other hand, F. graminearum infection of durum wheat increased the Cd concentration in the grains. The promoting effect of Fusarium infection on Cd accumulation was attributed to decoupling of the allocation of Cd and photoassimilates to the grains and to the reduced strength of the grain sink for photoassimilates caused by the fungus. Provided that this result is confirmed in field conditions, it suggests that in Cd-contaminated soils, particular attention should be paid to agronomic practices that affect Fusarium head blight disease to avoid further increase in the risk of exceeding the regulatory limit set by the European Union for Cd in durum wheat.


Asunto(s)
Fusarium , Micotoxinas , Cadmio , Grano Comestible/química , Micotoxinas/análisis , Enfermedades de las Plantas/microbiología , Tricotecenos , Triticum/microbiología
9.
Genetica ; 139(11-12): 1367-80, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22327603

RESUMEN

In the Sahel of Africa, farmers often modify their cultivation practices to adapt to environmental changes. How these changes shape the agro-biodiversity is a question of primary interest for the conservation of plant genetic resources. We addressed this question in a case study on pearl millet in south western Niger where farmers used to cultivate landraces with different cycle length in order to cope with rain uncertainty. Early and late landraces were previously grown on distant fields. Nowadays, mostly because of human population pressure and soil impoverishment, it happens that the two types of landraces are grown on adjacent fields, opening the question whether gene flow between them may occur. This question was tackled through a comparative study among contrasting situations pertaining to the spatial distribution of early and late landraces. Observations of flowering periods showed that pollen flow between the two landraces is possible and has a preferential direction from early to late populations.


Asunto(s)
Evolución Molecular , Flujo Génico , Pennisetum/genética , Agricultura , Repeticiones de Microsatélite , Fenotipo , Polimorfismo Genético , Dinámica Poblacional
10.
Front Plant Sci ; 11: 870, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625228

RESUMEN

Phosphorus (P) in durum wheat grains after anthesis originates from either the external P source or the internal remobilization of P from different plant organs. The supply of P and its use by the plant are important factors that can affect the contribution of each source to grain P nutrition. Thus, this experiment aimed to quantify the origin of P in grains of durum wheat plants with different P nutritional status. Wheat plants were grown from juvenile stages to maturity in complete nutrient solutions with either high (0.125 mM) or low (0.025 mM) P concentrations in greenhouse conditions. Phosphorus in nutrient solutions was spiked by introducing 32P after anthesis to quantify the external P uptake and its partitioning within plant organs (spikelets, leaves, stems, roots, and post-anthesis tillers) and grains. Phosphorus use efficiency in durum wheat plants was also determined. The low and high P supply resulted in two highly different plant nutritional P status. Plants with low P status remobilized most of their stored P in all organs and allocated more than 72% of post-anthesis P uptake to grain P nutrition, whereas in the high P plants this was only 56%. Enhanced remobilization of P and the efficient allocation of newly acquired P to grains were crucial for durum wheat grain P nutrition grown under low P supply. The remobilization of P represented 81% of grain P in low P plants while it represented 65% for high P plants. Organs that contributed the most to P remobilization in low P plants were spikelets (43%) and leaves (35%). The post-anthesis tiller development was reduced in low P plants suggesting a preferential allocation of P to grains under this treatment. We concluded that P loading into grains in durum wheat is mainly derived from the remobilization of internal P sources stored before anthesis, even at high external P supply during grain filling.

11.
Front Plant Sci ; 10: 676, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191584

RESUMEN

Recent research suggests that the frequency of polyploidy may have been underestimated in gymnosperms. One notable example is in the conifer genus Juniperus, where there are already a few reports of polyploids although data are still missing for most species. In this study, we evaluated the extent of polyploidy in Juniperus by conducting the first comprehensive screen across nearly all of the genus. Genome size data from fresh material, together with chromosome counts, were used to demonstrate that genome sizes estimated from dried material could be used as reliable proxies to uncover the extent of ploidy diversity across the genus. Our analysis revealed that 16 Juniperus taxa were polyploid, with tetraploids and one hexaploid being reported. Furthermore, by analyzing the genome size and chromosome data within a phylogenetic framework we provide the first evidence of possible lineage-specific polyploidizations within the genus. Genome downsizing following polyploidization is moderate, suggesting limited genome restructuring. This study highlights the importance of polyploidy in Juniperus, making it the first conifer genus and only the second genus in gymnosperms where polyploidy is frequent. In this sense, Juniperus represents an interesting model for investigating the genomic and ecological consequences of polyploidy in conifers.

12.
Isotopes Environ Health Stud ; 52(6): 577-91, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26982084

RESUMEN

The goals of the present study were to obtain a first estimate of intraspecific variability of carbon isotope discrimination (Δ) in safflower, a thistle-like herbaceous plant, and to determine the statistical relationship between Δ and grain yield as well as its components in a collection of 45 accessions of different origins. Grain yield and aboveground biomass, harvest index, average grain weight, and Δ (measured on the bulk leaf organic matter) were investigated in experimental field conditions. A large variability was noted for all traits but a principal component analysis (PCA) allowed to identify several homogeneous groups of accessions. Average grain yield per plant varied between 1 and 39 g. Δ varied between 21.3 and 25.2 ‰, i.e. a large variation of 3.9 ‰. In our experiment, the variation of Δ was not significantly related to that of grain yield in the whole accession sample. However, we found contrasting trends for this relation within accession groups. These initial results motivate further experiments to assess more in depth correlation between Δ and yield in safflower and are encouraging regarding the possibility of using Δ as an effective selection index in safflower to obtain genotypes that efficiently consume water. This study also highlighted one accession that combines the two characters required in the Mediterranean regions, i.e. high yield performance and high water-use efficiency.


Asunto(s)
Isótopos de Carbono/análisis , Carthamus tinctorius/clasificación , Selección Genética , Carthamus tinctorius/genética , Región Mediterránea , Análisis de Componente Principal , Especificidad de la Especie
13.
Evol Appl ; 9(10): 1241-1257, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27877203

RESUMEN

Crop populations in smallholder farming systems are shaped by the interaction of biological, ecological, and social processes, occurring on different spatiotemporal scales. Understanding these dynamics is fundamental for the conservation of crop genetic resources. In this study, we investigated the processes involved in sorghum and pearl millet diversity dynamics on Mount Kenya. Surveys were conducted in ten sites distributed along two elevation transects and occupied by six ethnolinguistic groups. Varieties of both species grown in each site were inventoried and characterized using SSR markers. Genetic diversity was analyzed using both individual- and population-based approaches. Surveys of seed lot sources allowed characterizing seed-mediated gene flow. Past sorghum diffusion dynamics were explored by comparing Mount Kenya sorghum diversity with that of the African continent. The absence of structure in pearl millet genetic diversity indicated common ancestry and/or important pollen- and seed-mediated gene flow. On the contrary, sorghum varietal and genetic diversity showed geographic patterns, pointing to different ancestry of varieties, limited pollen-mediated gene flow, and geographic patterns in seed-mediated gene flow. Social and ecological processes involved in shaping seed-mediated gene flow are further discussed.

14.
Chem Biol Interact ; 206(2): 194-203, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24060682

RESUMEN

We investigated the antioxidant activities of some phenolic acid derivatives on a cell free system and on cellular and enzymatic models involved in inflammation. The stoichiometric antioxidant activities of phenolic acid derivatives were studied by measuring their capacity to scavenge the radical cation 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS(+)) and reactive oxygen species (ROS) produced by stimulated neutrophils. The anticatalytic antioxidant capacity of the molecules was evaluated on the activity of myeloperoxidase (MPO), an oxidant enzyme present in and released by the primary granules of neutrophils. The ROS produced by PMA-stimulated neutrophils were measured by lucigenin-enhanced chemiluminescence (CL) and the potential interaction of the molecules with MPO was investigated without interferences due to medium by Specific Immuno-Extraction Followed by Enzyme Detection (SIEFED). The antioxidant activities of the phenolic compounds were correlated to their redox potentials measured by differential pulse voltammetry (DPV), and discussed in relation to their molecular structure. The ability of the phenolic molecules to scavenge ABTS radicals and ROS derived from neutrophils was inversely correlated to their increased redox potential. The number of hydroxyl groups (three) and their position (catechol) were essential for their efficacy as stoichiometric antioxidants or scavengers. On MPO activity, the inhibitory capacity of the molecules was not really correlated with their redox potential. Likewise, for the inhibition of MPO activity the number of OH groups and mainly the elongation of the carboxylic group were essential, probably by facilitating the interaction with the active site or the structure of the enzyme. The redox potential measurement, combined with ABTS and CL techniques, seems to be a good technique to select stoichiometric antioxidants but not anticatalytic ones, as seen for MPO, what rather involves a direct interaction with the enzyme.


Asunto(s)
Antioxidantes/química , Ácido Benzoico/química , Animales , Antioxidantes/farmacología , Ácido Benzoico/farmacología , Catecoles/química , Sistema Libre de Células , Técnicas Electroquímicas , Ácido Gálico/farmacología , Caballos , Mediciones Luminiscentes , Neutrófilos/efectos de los fármacos , Neutrófilos/enzimología , Neutrófilos/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
15.
PLoS One ; 7(5): e36642, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22606277

RESUMEN

BACKGROUND: Pearl millet landraces display an important variation in their cycle duration. This diversity contributes to the stability of crop production in the Sahel despite inter-annual rainfall fluctuation. Conservation of phenological diversity is important for the future of pearl millet improvement and sustainable use. Identification of genes contributing to flowering time variation is therefore relevant. In this study we focused on three flowering candidate genes, PgHd3a, PgDwarf8 and PgPHYC. We tested for signatures of past selective events within polymorphism patterns of these three genes that could have been associated with pearl millet domestication and/or landraces differentiation. In order to implement ad hoc neutrality tests, a plausible demographic history of pearl millet domestication was inferred through Approximate Bayesian Computation by using eight neutral STS loci. RESULTS: Domesticated pearl millet exhibited 84% of the nucleotide diversity level found in the wild population. No specific polymorphisms were found either in the wild or in the domestic populations. The bayesian approach and previous studies suggest that gene flow between wild relatives and domesticated pearl millets is a main factor explaining these results. Early and late landraces did not show significant genetic differentiation at both the neutral and the candidate loci. A positive selection was evidenced in PgHd3a and PgDwarf8 genes of domestic forms but not in the wild population. CONCLUSION: Our results strongly suggest that PgHd3a and PgDwarf8 were likely targeted by selection during domestication. However, a potential role of any of the three candidate genes in the phenological differentiation between early and late landraces was not supported by our data. Reasons why these results contrast with previous results that have shown a slight but significant association between PgPHYC polymorphisms and variation in flowering time in pearl millet are discussed.


Asunto(s)
Pennisetum/genética , Secuencia de Aminoácidos , Teorema de Bayes , ADN de Plantas/genética , Evolución Molecular , Flores/genética , Flores/crecimiento & desarrollo , Genes de Plantas , Variación Genética , Repeticiones de Microsatélite , Modelos Genéticos , Datos de Secuencia Molecular , Pennisetum/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/genética , Polimorfismo Genético , Selección Genética , Homología de Secuencia de Aminoácido
16.
PLoS One ; 6(7): e22404, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799845

RESUMEN

BACKGROUND: During the Neolithic revolution, early farmers altered plant development to domesticate crops. Similar traits were often selected independently in different wild species; yet the genetic basis of this parallel phenotypic evolution remains elusive. Plant architecture ranks among these target traits composing the domestication syndrome. We focused on the reduction of branching which occurred in several cereals, an adaptation known to rely on the major gene Teosinte-branched1 (Tb1) in maize. We investigate the role of the Tb1 orthologue (Pgtb1) in the domestication of pearl millet (Pennisetum glaucum), an African outcrossing cereal. METHODOLOGY/PRINCIPAL FINDINGS: Gene cloning, expression profiling, QTL mapping and molecular evolution analysis were combined in a comparative approach between pearl millet and maize. Our results in pearl millet support a role for PgTb1 in domestication despite important differences in the genetic basis of branching adaptation in that species compared to maize (e.g. weaker effects of PgTb1). Genetic maps suggest this pattern to be consistent in other cereals with reduced branching (e.g. sorghum, foxtail millet). Moreover, although the adaptive sites underlying domestication were not formerly identified, signatures of selection pointed to putative regulatory regions upstream of both Tb1 orthologues in maize and pearl millet. However, the signature of human selection in the pearl millet Tb1 is much weaker in pearl millet than in maize. CONCLUSIONS/SIGNIFICANCE: Our results suggest that some level of parallel evolution involved at least regions directly upstream of Tb1 for the domestication of pearl millet and maize. This was unanticipated given the multigenic basis of domestication traits and the divergence of wild progenitor species for over 30 million years prior to human selection. We also hypothesized that regular introgression of domestic pearl millet phenotypes by genes from the wild gene pool could explain why the selective sweep in pearl millet is softer than in maize.


Asunto(s)
Grano Comestible/genética , Evolución Molecular , Pennisetum/genética , Proteínas de Plantas/genética , Selección Genética , Homología de Secuencia de Ácido Nucleico , Mapeo Cromosómico , Clonación Molecular , Grano Comestible/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos/genética , Hibridación Genética , Pennisetum/anatomía & histología , Polimorfismo Genético/genética , Sitios de Carácter Cuantitativo/genética
17.
Funct Plant Biol ; 36(6): 527-540, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688667

RESUMEN

The dynamics of sugar (hexose) concentration in ripening grape berries (Vitis vinifera L.) were simulated with a refined mechanistic model. Changes in sugar concentration were reproduced by the sum of sugar import (S), sugar metabolism (M) and water budget (W). S and W were derived from model inputs of fresh and dry mass, and M was simulated with a relative metabolism rate describing the depletion of hexose. The relative metabolism rate was associated with the relative growth rate of dry mass with a coefficient (k) that was constant for a given cultivar under various growth conditions (temperature, water supply, and source-sink ratio) but varied with genotype. The k value was ~20% higher for cv. Merlot than for cv. Cabernet Sauvignon, indicating more imported sugars would be depleted by Merlot than Cabernet Sauvignon. The model correctly simulated the negative effect of lowered leaf-to-fruit ratio and the positive effect of water shortage on sugar concentration. Sensitivity analysis revealed that the present model was weakly sensitive to k because of sugar accumulation being predominantly controlled by S, with M relatively small (~20%) with respect to the increment of sugar concentration. Model simulation indicated that the decreasing leaf-to-fruit ratio reduced S more than M and W, causing a net decrease in sugar concentration. In contrast, the water shortage decreased S less than M and W, resulting in a net increase in sugar concentration.

18.
Genetica ; 133(2): 167-78, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17828466

RESUMEN

We studied the regional genetic diversity and seed exchange dynamics of pearl millet landraces in south-western Niger. The genetic study was based on AFLP markers. We found significant genetic differentiation between landraces in different geographical areas of south-western Niger. However, the degree of differentiation was low insofar as only 1.9% of the total molecular diversity was due to regional differentiation, suggesting a relatively high gene flow. Anthropologic studies on farming practices have suggested that seed exchanges between farmers on a large geographical scale probably make a considerable contribution to this result. In order to test this hypothesis, the effects of seed exchange on the genetic diversity of landraces was analyzed on seed samples from two distant villages in contrasting areas of south-western Niger. Seeds imported by farmers into the southern village of Sina Koara did not differ significantly from locally grown landraces. By contrast, in the northern village of Alzou, several samples were genetically different from locally grown landraces and closer to southern accessions. These data suggest that the seed flow is preferentially from south to north, i.e. from an area with more favorable rainfall conditions. The potential consequences for the genetic diversity and adaptation of northern pearl millet landraces are discussed.


Asunto(s)
Flujo Génico/fisiología , Variación Genética , Pennisetum/genética , Semillas/fisiología , Agricultura/métodos , Comercio , Marcadores Genéticos , Genética de Población , Niger , Técnicas de Amplificación de Ácido Nucleico , Pennisetum/fisiología , Filogenia , Semillas/genética
19.
Genetica ; 128(1-3): 205-16, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17028951

RESUMEN

Miniature-inverted repeat transposable elements (MITEs) are abundantly repeated in plant genomes and are especially found in genic regions where they could contribute regulatory elements for gene expression. We describe with molecular and cytological tools the first MITE family reported in pearl millet: Tuareg. It was initially detected in the pearl millet ortholog of Teosinte-branched1, an important developmental gene involved in the domestication of maize. The Tuareg family was amplified recently in the pearl millet genome and elements were found more abundant in wild than in domesticated plants. We found that they shared similarity in their terminal repeats with the previously described mPIF MITEs and that they are also present in other Pennisetum species, in maize and more distantly related grasses. The Tuareg family may be part of MITEs activated by PIF-like transposases and it could have been mobile since pearl millet domestication.


Asunto(s)
ADN de Plantas/genética , Pennisetum/genética , Secuencias Repetitivas de Ácidos Nucleicos , Zea mays/genética , Secuencia de Bases , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Genes de Plantas , Variación Genética , Genoma de Planta , Hibridación Fluorescente in Situ , Familia de Multigenes , Polimorfismo Genético , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA