Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Pediatr Res ; 95(1): 193-199, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37500756

RESUMEN

BACKGROUND: Automated computational measures of EEG have the potential for large-scale application. We hypothesised that a predefined measure of early EEG-burst shape (increased burst sharpness) could predict neurodevelopmental impairment (NDI) and mental developmental index (MDI) at 2 years of age over-and-above that of brain ultrasound. METHODS: We carried out a secondary analysis of data from extremely preterm infants collected for an RCT (SafeBoosC-II). Two hours of single-channel cross-brain EEG was used to analyse burst sharpness with an automated algorithm. The co-primary outcomes were moderate-or-severe NDI and MDI. Complete data were available from 58 infants. A predefined statistical analysis was adjusted for GA, sex and no, mild-moderate, and severe brain injury as detected by cranial ultrasound. RESULTS: Nine infants had moderate-or-severe NDI and the mean MDI was 87 ± 17.3 SD. The typical burst sharpness was low (negative values) and varied relatively little (mean -0.81 ± 0.11 SD), but the odds ratio for NDI was increased by 3.8 (p = 0.008) and the MDI was reduced by -3.2 points (p = 0.14) per 0.1 burst sharpness units increase (+1 SD) in the adjusted analysis. CONCLUSION: This study confirms the association between EEG-burst measures in preterm infants and neurodevelopment in childhood. Importantly, this was by a priori defined analysis. IMPACT: A fully automated, computational measure of EEG in the first week of life was predictive of neurodevelopmental impairment at 2 years of age. This confirms many previous studies using expert reading of EEG. Only single-channel EEG data were used, adding to the applicability. EEG was recorded by several different devices thus this measure appears to be robust to differences in electrodes, amplifiers and filters. The likelihood ratio of a positive EEG test, however, was only about 2, suggesting little immediate clinical value.


Asunto(s)
Encéfalo , Recien Nacido Extremadamente Prematuro , Lactante , Humanos , Recién Nacido , Encéfalo/diagnóstico por imagen , Ecoencefalografía , Ultrasonografía , Electroencefalografía
2.
Brain ; 146(4): 1322-1327, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36380526

RESUMEN

The diagnosis of obsessive-compulsive disorder (OCD) has been linked with changes in frontostriatal resting-state connectivity. However, replication of prior findings is lacking, and the mechanistic understanding of these effects is incomplete. To confirm and advance knowledge on changes in frontostriatal functional connectivity in OCD, participants with OCD and matched healthy controls underwent resting-state functional, structural and diffusion neuroimaging. Functional connectivity changes in frontostriatal systems were here replicated in individuals with OCD (n = 52) compared with controls (n = 45). OCD participants showed greater functional connectivity (t = 4.3, PFWE = 0.01) between the nucleus accumbens (NAcc) and the orbitofrontal cortex (OFC) but lower functional connectivity between the dorsal putamen and lateral prefrontal cortex (t = 3.8, PFWE = 0.04) relative to controls. Computational modelling suggests that NAcc-OFC connectivity changes reflect an increased influence of NAcc over OFC activity and reduced OFC influence over NAcc activity (posterior probability, Pp > 0.66). Conversely, dorsal putamen showed reduced modulation over lateral prefrontal cortex activity (Pp > 0.90). These functional deregulations emerged on top of a generally intact anatomical substrate. We provide out-of-sample replication of opposite changes in ventro-anterior and dorso-posterior frontostriatal connectivity in OCD and advance the understanding of the neural underpinnings of these functional perturbations. These findings inform the development of targeted therapies normalizing frontostriatal dynamics in OCD.


Asunto(s)
Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo , Humanos , Corteza Prefrontal/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Núcleo Accumbens , Putamen/diagnóstico por imagen , Mapeo Encefálico
3.
Pediatr Res ; 94(1): 206-212, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36376508

RESUMEN

BACKGROUND: Preterm birth predisposes infants to adverse outcomes that, without early intervention, impacts their long-term health. To assist bedside monitoring, we developed a tool to track the autonomic maturation of the preterm by assessing heart rate variability (HRV) changes during intensive care. METHODS: Electrocardiogram (ECG) recordings were longitudinally recorded in 67 infants (26-38 weeks postmenstrual age (PMA)). Supervised machine learning was used to generate a functional autonomic age (FAA), by combining 50 computed HRV features from successive 5-minute ECG epochs (median of 23 epochs per infant). Performance of the FAA was assessed by correlation to PMA, clinical outcomes and the infant's functional brain age (FBA), an index of maturation derived from the electroencephalogram. RESULTS: The FAA was strongly correlated to PMA (r = 0.86, 95% CI: 0.83-0.93) with a mean absolute error (MAE) of 1.66 weeks and also accurately estimated FBA (MAE = 1.58 weeks, n = 54 infants). The relationship between PMA and FAA was not confounded by neurodevelopmental outcome (p = 0.18, n = 45), sex (p = 0.88, n = 56), patent ductus arteriosus (p = 0.08, n = 56), IVH (p = 0.63, n = 56) or body weight at birth (p = 0.95, n = 56). CONCLUSIONS: The FAA, an index derived from the ubiquitous ECG signal, offers direct avenues towards estimating autonomic maturation at the bedside during intensive care monitoring. IMPACT: The development of a tool to track functional autonomic age in preterm infants based on heart rate variability features in the electrocardiogram provides a rapid and specialized view of autonomic maturation at the bedside. Functional autonomic age is linked closely to postmenstrual age and central nervous system function response, as determined by its relationship to functional brain age from the electroencephalogram. Tracking functional autonomic age during neonatal intensive care unit monitoring offers a unique insight into cardiovascular health in infants born extremely preterm and their maturational trajectories to term age.


Asunto(s)
Recien Nacido Prematuro , Nacimiento Prematuro , Lactante , Femenino , Recién Nacido , Humanos , Sistema Nervioso Autónomo/fisiología , Frecuencia Cardíaca/fisiología , Unidades de Cuidado Intensivo Neonatal
4.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047696

RESUMEN

Cardiovascular toxicity and diseases are phenomena that have a vastly detrimental impact on morbidity and mortality. The pathophysiology driving the development of these conditions is multifactorial but commonly includes the perturbance of reactive oxygen species (ROS) signalling, iron homeostasis and mitochondrial bioenergetics. The transcription factor nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2), a master regulator of cytoprotective responses, drives the expression of genes that provide resistance to oxidative, electrophilic and xenobiotic stresses. Recent research has suggested that stimulation of the NRF2 signalling pathway can alleviate cardiotoxicity and hallmarks of cardiovascular disease progression. However, dysregulation of NRF2 dynamic responses can be severely impacted by ageing processes and off-target toxicity from clinical medicines including anthracycline chemotherapeutics, rendering cells of the cardiovascular system susceptible to toxicity and subsequent tissue dysfunction. This review addresses the current understanding of NRF2 mechanisms under homeostatic and cardiovascular pathophysiological conditions within the context of wider implications for this diverse transcription factor.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Enfermedades Cardiovasculares/metabolismo , Estrés Oxidativo/fisiología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/metabolismo , Sistema Cardiovascular/metabolismo
5.
Mol Psychiatry ; 26(8): 4036-4045, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31666679

RESUMEN

Adults with childhood-onset attention-deficit hyperactivity disorder (ADHD) show altered whole-brain connectivity. However, the relationship between structural and functional brain abnormalities, the implications for the development of life-long debilitating symptoms, and the underlying mechanisms remain uncharted. We recruited a unique sample of 80 medication-naive adults with a clinical diagnosis of childhood-onset ADHD without psychiatric comorbidities, and 123 age-, sex-, and intelligence-matched healthy controls. Structural and functional connectivity matrices were derived from diffusion spectrum imaging and multi-echo resting-state functional MRI data. Hub, feeder, and local connections were defined using diffusion data. Individual-level measures of structural connectivity and structure-function coupling were used to contrast groups and link behavior to brain abnormalities. Computational modeling was used to test possible neural mechanisms underpinning observed group differences in the structure-function coupling. Structural connectivity did not significantly differ between groups but, relative to controls, ADHD showed a reduction in structure-function coupling in feeder connections linking hubs with peripheral regions. This abnormality involved connections linking fronto-parietal control systems with sensory networks. Crucially, lower structure-function coupling was associated with higher ADHD symptoms. Results from our computational model further suggest that the observed structure-function decoupling in ADHD is driven by heterogeneity in neural noise variability across brain regions. By highlighting a neural cause of a clinically meaningful breakdown in the structure-function relationship, our work provides novel information on the nature of chronic ADHD. The current results encourage future work assessing the genetic and neurobiological underpinnings of neural noise in ADHD, particularly in brain regions encompassed by fronto-parietal systems.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
6.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210311, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-35965469

RESUMEN

Long-term control of SARS-CoV-2 outbreaks depends on the widespread coverage of effective vaccines. In Australia, two-dose vaccination coverage of above 90% of the adult population was achieved. However, between August 2020 and August 2021, hesitancy fluctuated dramatically. This raised the question of whether settings with low naturally derived immunity, such as Queensland where less than [Formula: see text] of the population is known to have been infected in 2020, could have achieved herd immunity against 2021's variants of concern. To address this question, we used the agent-based model Covasim. We simulated outbreak scenarios (with the Alpha, Delta and Omicron variants) and assumed ongoing interventions (testing, tracing, isolation and quarantine). We modelled vaccination using two approaches with different levels of realism. Hesitancy was modelled using Australian survey data. We found that with a vaccine effectiveness against infection of 80%, it was possible to control outbreaks of Alpha, but not Delta or Omicron. With 90% effectiveness, Delta outbreaks may have been preventable, but not Omicron outbreaks. We also estimated that a decrease in hesitancy from 20% to 14% reduced the number of infections, hospitalizations and deaths by over 30%. Overall, we demonstrate that while herd immunity may not be attainable, modest reductions in hesitancy and increases in vaccine uptake may greatly improve health outcomes. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Asunto(s)
COVID-19 , Inmunidad Colectiva , Australia/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Queensland/epidemiología , SARS-CoV-2 , Vacunación
7.
Neuroimage ; 229: 117738, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33454400

RESUMEN

Synchronization is a collective mechanism by which oscillatory networks achieve their functions. Factors driving synchronization include the network's topological and dynamical properties. However, how these factors drive the emergence of synchronization in the presence of potentially disruptive external inputs like stochastic perturbations is not well understood, particularly for real-world systems such as the human brain. Here, we aim to systematically address this problem using a large-scale model of the human brain network (i.e., the human connectome). The results show that the model can produce complex synchronization patterns transitioning between incoherent and coherent states. When nodes in the network are coupled at some critical strength, a counterintuitive phenomenon emerges where the addition of noise increases the synchronization of global and local dynamics, with structural hub nodes benefiting the most. This stochastic synchronization effect is found to be driven by the intrinsic hierarchy of neural timescales of the brain and the heterogeneous complex topology of the connectome. Moreover, the effect coincides with clustering of node phases and node frequencies and strengthening of the functional connectivity of some of the connectome's subnetworks. Overall, the work provides broad theoretical insights into the emergence and mechanisms of stochastic synchronization, highlighting its putative contribution in achieving network integration underpinning brain function.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Redes Neurales de la Computación , Adolescente , Adulto , Algoritmos , Femenino , Humanos , Masculino , Procesos Estocásticos , Adulto Joven
8.
J Med Internet Res ; 23(3): e23218, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33651707

RESUMEN

BACKGROUND: Since the beginning of the COVID-19 pandemic, social distancing, self-quarantining, wearing masks, and washing hands have become part of the new norm for many, but not all. It appears that such preventive measures are critical to "flattening the curve" of the spread of COVID-19. The public's adoption of such behaviors is an essential component in the battle against what has been referred to as the "invisible enemy." OBJECTIVE: The primary objective of this study was to develop a model for predicting COVID-19 preventive behaviors among US college students. The Health Belief Model has a long history of use and empirical support in predicting preventive health behaviors, but it is not without its purported shortcomings. This study identifies a more optimal and defensible combination of variables to explain preventive behaviors among college students. This segment of the US population is critical in helping slow the spread of COVID-19 because of the relative reluctance of college students to perform the needed behaviors given they do not feel susceptible to or fearful of COVID-19. METHODS: For this study, 415 US college students were surveyed via Qualtrics and asked to answer questions regarding their fear of COVID-19, information receptivity (seeking relevant information), perceived knowledge of the disease, self-efficacy, and performance of preventive behaviors. The PROCESS macro (Model 6) was used to test our conceptual model, including predictions involving sequential mediation. RESULTS: Sequential mediation results show that fear of COVID-19 leads individuals to seek out information regarding the disease, which increases their perceived knowledge and fosters self-efficacy; this is key to driving preventive behaviors. CONCLUSIONS: Self-imposed preventive measures can drastically impact the rate of infection among populations. Based on this study's newly created sequential mediation model, communication strategies for encouraging COVID-19 preventive behaviors are offered. It is clear that college students, and very possibly adults of all ages, must have a healthy fear of COVID-19 to set in motion a process where concerned individuals seek out COVID-19-related information, increasing their store of knowledge concerning the disease, their self-efficacy, and ultimately their likelihood of performing the needed preventive behaviors.


Asunto(s)
COVID-19/prevención & control , COVID-19/psicología , Conductas Relacionadas con la Salud , Modelos Psicológicos , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Análisis de Mediación , Pandemias , SARS-CoV-2/aislamiento & purificación , Adulto Joven
9.
Neuroimage ; 221: 117173, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682991

RESUMEN

Functional neuroimaging experiments that employ naturalistic stimuli (natural scenes, films, spoken narratives) provide insights into cognitive function "in the wild". Natural stimuli typically possess crowded, spectrally dense, dynamic, and multimodal properties within a rich multiscale structure. However, when using natural stimuli, various challenges exist for creating parametric manipulations with tight experimental control. Here, we revisit the typical spectral composition and statistical dependences of natural scenes, which distinguish them from abstract stimuli. We then demonstrate how to selectively degrade subtle statistical dependences within specific spatial scales using the wavelet transform. Such manipulations leave basic features of the stimuli, such as luminance and contrast, intact. Using functional neuroimaging of human participants viewing degraded natural images, we demonstrate that cortical responses at different levels of the visual hierarchy are differentially sensitive to subtle statistical dependences in natural images. This demonstration supports the notion that perceptual systems in the brain are optimally tuned to the complex statistical properties of the natural world. The code to undertake these stimulus manipulations, and their natural extension to dynamic natural scenes (films), is freely available.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Visual/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Adulto Joven
10.
Neuroimage ; 160: 97-112, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28126550

RESUMEN

The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Humanos
11.
Neuroimage ; 145(Pt A): 118-129, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27666386

RESUMEN

Densely seeded probabilistic tractography yields weighted networks that are nearly fully connected, hence containing many spurious fibers. It is thus necessary to prune spurious connections from probabilistically-derived networks to obtain a more reliable overall estimate of the connectivity. A standard method is to threshold by weight, keeping only the strongest edges. Here, by measuring the consistency of edge weights across subjects, we propose a new thresholding method that aims to reduce the rate of false-positives in group-averaged connectivity matrices. Close inspection of the relationship between consistency, weight, and distance suggests that the most consistent edges are in fact those that are strong for their length, rather than simply strong overall. Hence retaining the most consistent edges preserves more long-distance connections than traditional weight-based thresholding, which penalizes long connections for being weak regardless of anatomy. By comparing our thresholded networks to mouse and macaque tracer data, we also show that consistency-based thresholding exhibits the species-invariant exponential decay of connection weights with distance, while weight-based thresholding does not. We also show that consistency-based thresholding can be used to identify highly consistent and highly inconsistent subnetworks across subjects, enabling more nuanced analyses of group-level connectivity than just the mean connectivity.


Asunto(s)
Conectoma/métodos , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Red Nerviosa/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Animales , Femenino , Humanos , Masculino , Vías Nerviosas/diagnóstico por imagen , Adulto Joven
12.
Mol Carcinog ; 56(6): 1673-1679, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28150890

RESUMEN

C>T substitutions at dipyrimidine sites dominate the melanoma genome. We recently analyzed the exomes of spontaneous and neonatal UVR-induced murine melanomas, noting a dramatic change in the genomic footprint at C>T substitutions in the latter. Here we re-analyzed published exome-wide footprints in human melanomas stratified in terms of likely previous sun exposure. Acral and mucosal melanomas were heterogeneous in terms of base substitution types, but most C>Ts occurred in the context of 3'G, probably resulting from spontaneous deamination of the cytosine. C>Ts in sun-exposed melanomas were statistically different from acral/mucosal lesions only in preferring an adjacent 5'T and 3'C. Pyrimidine dimer adducts can form between any pyrimidine (TT, TC, CT, CC). Hence in melanoma C>Ts are overwhelmingly induced at TC or CC photoproducts, or, there are peculiarities in DNA repair that favor the mutation of cytosines with these two pyrimidines adjacent. If melanoma UVR footprints at C>Ts reflect a specific dimer type (eg, 6-4 photoproduct or cyclobutane pyrimidine dimer), these could be removed post UVR, for instance using photolyases, to potentially reduce melanoma risk. If specific modes of DNA repair and/or replication cause these footprints, methodically downregulating selected DNA polymerases in UVR-induced animal models of melanoma, combined with exome sequencing, could begin to assess this. Finally, a preponderance of TpCpC as opposed to NpCpG at C>Ts exome-wide is likely to be a good indicator of whether a melanoma has incurred even a small amount of sun damage. This information will assist epidemiological studies in predicting individual levels of sun exposure.


Asunto(s)
Exoma/efectos de la radiación , Melanoma/genética , Neoplasias Inducidas por Radiación/genética , Dímeros de Pirimidina/genética , Animales , Humanos , Mutación/efectos de la radiación , Rayos Ultravioleta
13.
Neuroimage ; 124(Pt A): 379-393, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26364864

RESUMEN

The human connectome is a topologically complex, spatially embedded network. While its topological properties have been richly characterized, the constraints imposed by its spatial embedding are poorly understood. By applying a novel resampling method to tractography data, we show that the brain's spatial embedding makes a major, but not definitive, contribution to the topology of the human connectome. We first identify where the brain's structural hubs would likely be located if geometry was the sole determinant of brain topology. Empirical networks show a widespread shift away from this geometric center toward more peripheral interconnected skeletons in each hemisphere, with discrete clusters around the anterior insula, and the anterior and posterior midline regions of the cortex. A relatively small number of strong inter-hemispheric connections assimilate these intra-hemispheric structures into a rich club, whose connections are locally more clustered but globally longer than predicted by geometry. We also quantify the extent to which the segregation, integration, and modularity of the human brain are passively inherited from its geometry. These analyses reveal novel insights into the influence of spatial geometry on the human connectome, highlighting specific topological features that likely confer functional advantages but carry an additional metabolic cost.


Asunto(s)
Encéfalo/anatomía & histología , Conectoma/métodos , Adolescente , Adulto , Algoritmos , Interpretación Estadística de Datos , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Conceptos Matemáticos , Modelos Neurológicos , Vías Nerviosas/anatomía & histología , Adulto Joven
14.
Brain ; 138(Pt 8): 2206-18, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26001723

RESUMEN

Intermittent bursts of electrical activity are a ubiquitous signature of very early brain activity. Previous studies have largely focused on assessing the amplitudes of these transient cortical bursts or the intervals between them. Recent advances in basic neuroscience have identified the presence of scale-free 'avalanche' processes in bursting patterns of cortical activity in other clinical contexts. Here, we hypothesize that cortical bursts in human preterm infants also exhibit scale-free properties, providing new insights into the nature, temporal evolution, and prognostic value of spontaneous brain activity in the days immediately following preterm birth. We examined electroencephalographic recordings from 43 extremely preterm infants (gestational age 22-28 weeks) and demonstrated that their cortical bursts exhibit scale-free properties as early as 12 h after birth. The scaling relationships of cortical bursts correlate significantly with later mental development-particularly within the first 12 h of life. These findings show that early preterm brain activity is characterized by scale-free dynamics which carry developmental significance, hence offering novel means for rapid and early clinical prediction of neurodevelopmental outcomes.


Asunto(s)
Encéfalo/fisiología , Desarrollo Infantil/fisiología , Electroencefalografía , Recien Nacido Extremadamente Prematuro/fisiología , Recien Nacido Prematuro/fisiología , Encéfalo/fisiopatología , Preescolar , Femenino , Edad Gestacional , Humanos , Lactante , Masculino
15.
J Neurosci ; 34(19): 6557-72, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806681

RESUMEN

The human brain is fragile in the face of oxygen deprivation. Even a brief interruption of metabolic supply at birth challenges an otherwise healthy neonatal cortex, leading to a cascade of homeostatic responses. During recovery from hypoxia, cortical activity exhibits a period of highly irregular electrical fluctuations known as burst suppression. Here we show that these bursts have fractal properties, with power-law scaling of burst sizes across a remarkable 5 orders of magnitude and a scale-free relationship between burst sizes and durations. Although burst waveforms vary greatly, their average shape converges to a simple form that is asymmetric at long time scales. Using a simple computational model, we argue that this asymmetry reflects activity-dependent changes in the excitatory-inhibitory balance of cortical neurons. Bursts become more symmetric following the resumption of normal activity, with a corresponding reorganization of burst scaling relationships. These findings place burst suppression in the broad class of scale-free physical processes termed crackling noise and suggest that the resumption of healthy activity reflects a fundamental reorganization in the relationship between neuronal activity and its underlying metabolic constraints.


Asunto(s)
Asfixia Neonatal/fisiopatología , Corteza Cerebral/fisiopatología , Algoritmos , Puntaje de Apgar , Interpretación Estadística de Datos , Electroencefalografía , Fenómenos Electrofisiológicos , Femenino , Edad Gestacional , Humanos , Concentración de Iones de Hidrógeno , Recién Nacido , Funciones de Verosimilitud , Masculino , Modelos Neurológicos , Modelos Estadísticos , Procesos Estocásticos
16.
Crit Care Med ; 43(10): 2219-27, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26154935

RESUMEN

OBJECTIVES: Intraventricular hemorrhage is a common neurologic complication of extremely preterm birth and leads to lifelong neurodevelopmental disabilities. Early bedside detection of intraventricular hemorrhage is crucial to enabling timely interventions. We sought to detect early markers of brain activity that preempt the occurrence of intraventricular hemorrhage in extremely preterm infants during the first postnatal days. DESIGN: Cross-sectional study. SETTING: Level III neonatal ICU. PATIENTS: Twenty-five extremely preterm infants (22-28 wk gestational age). MEASUREMENTS AND MAIN RESULTS: We quantitatively assessed electroencephalography in the first 72 hours of postnatal life, focusing on the electrical burst activity of the preterm. Cranial ultrasound was performed on day 1 (0-24 hr) and day 3 (48-72 hr). Outcomes were categorized into three classes: 1) no intraventricular hemorrhage (grade 0); 2) mild-moderate intraventricular hemorrhage (grades 1-2, i.e., germinal matrix hemorrhages or intraventricular hemorrhage without ventricular dilatation, respectively); and 3) severe intraventricular hemorrhage (grades 3-4, i.e., intraventricular hemorrhage with ventricular dilatation or intraparenchymal involvement). Quantitative assessment of electroencephalography burst shapes was used to preempt the occurrence and severity of intraventricular hemorrhage as detected by ultrasound. The shapes of electroencephalography bursts found in the intraventricular hemorrhage infants were significantly sharper (F = 13.78; p < 0.0001) and less symmetric (F = 6.91; p < 0.015) than in preterm infants without intraventricular hemorrhage. Diagnostic discrimination of intraventricular hemorrhage infants using measures of burst symmetry and sharpness yielded high true-positive rates (82% and 88%, respectively) and low false-positive rates (19% and 8%). Conventional electroencephalography measures of interburst intervals and burst counts were not significantly associated with intraventricular hemorrhage. CONCLUSIONS: Detection of intraventricular hemorrhage during the first postnatal days is possible from bedside measures of brain activity prior to ultrasound confirmation of intraventricular hemorrhage. Significantly, our novel automated assessment of electroencephalography preempts the occurrence of intraventricular hemorrhage in the extremely preterm. Early bedside detection of intraventricular hemorrhage holds promise for advancing individual care, targeted therapeutic trials, and understanding mechanisms of brain injury in neonates.


Asunto(s)
Hemorragia Cerebral/diagnóstico , Electroencefalografía , Enfermedades del Prematuro/diagnóstico , Estudios Transversales , Diagnóstico Precoz , Humanos , Recién Nacido
18.
EBioMedicine ; 102: 105061, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537603

RESUMEN

BACKGROUND: In children, objective, quantitative tools that determine functional neurodevelopment are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely acquired electroencephalography (EEG) offer reliable measures of brain function. METHODS: We developed and validated a measure of functional brain age (FBA) using a residual neural network-based interpretation of the paediatric EEG. In this cross-sectional study, we included 1056 children with typical development ranging in age from 1 month to 18 years. We analysed a 10- to 15-min segment of 18-channel EEG recorded during light sleep (N1 and N2 states). FINDINGS: The FBA had a weighted mean absolute error (wMAE) of 0.85 years (95% CI: 0.69-1.02; n = 1056). A two-channel version of the FBA had a wMAE of 1.51 years (95% CI: 1.30-1.73; n = 1056) and was validated on an independent set of EEG recordings (wMAE = 2.27 years, 95% CI: 1.90-2.65; n = 723). Group-level maturational delays were also detected in a small cohort of children with Trisomy 21 (Cohen's d = 0.36, p = 0.028). INTERPRETATION: A FBA, based on EEG, is an accurate, practical and scalable automated tool to track brain function maturation throughout childhood with accuracy comparable to widely used physical growth charts. FUNDING: This research was supported by the National Health and Medical Research Council, Australia, Helsinki University Diagnostic Center Research Funds, Finnish Academy, Finnish Paediatric Foundation, and Sigrid Juselius Foundation.


Asunto(s)
Encéfalo , Gráficos de Crecimiento , Humanos , Niño , Adolescente , Estudios Transversales , Redes Neurales de la Computación , Electroencefalografía
19.
Br J Pharmacol ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763521

RESUMEN

BACKGROUND AND PURPOSE: The canonical Kir6.2/SUR2A ventricular KATP channel is highly ATP-sensitive and remains closed under normal physiological conditions. These channels activate only when prolonged metabolic compromise causes significant ATP depletion and then shortens the action potential to reduce contractile activity. Pharmacological activation of KATP channels is cardioprotective, but physiologically, it is difficult to understand how these channels protect the heart if they only open under extreme metabolic stress. The presence of a second KATP channel population could help explain this. Here, we characterise the biophysical and pharmacological behaviours of a constitutively active Kir6.1-containing KATP channel in ventricular cardiomyocytes. EXPERIMENTAL APPROACH: Patch-clamp recordings from rat ventricular myocytes in combination with well-defined pharmacological modulators was used to characterise these newly identified K+ channels. Action potential recording, calcium (Fluo-4) fluorescence measurements and video edge detection of contractile function were used to assess functional consequences of channel modulation. KEY RESULTS: Our data show a ventricular K+ conductance whose biophysical characteristics and response to pharmacological modulation were consistent with Kir6.1-containing channels. These Kir6.1-containing channels lack the ATP-sensitivity of the canonical channels and are constitutively active. CONCLUSION AND IMPLICATIONS: We conclude there are two functionally distinct populations of ventricular KATP channels: constitutively active Kir6.1-containing channels that play an important role in fine-tuning the action potential and Kir6.2/SUR2A channels that activate with prolonged ischaemia to impart late-stage protection against catastrophic ATP depletion. Further research is required to determine whether Kir6.1 is an overlooked target in Comprehensive in vitro Proarrhythmia Assay (CiPA) cardiac safety screens.

20.
PLoS Comput Biol ; 8(8): e1002634, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912567

RESUMEN

Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena.


Asunto(s)
Modelos Teóricos , Biofisica , Redes Reguladoras de Genes , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA