Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Hum Mol Genet ; 32(18): 2808-2821, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37384414

RESUMEN

Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene have been identified as one of the most common genetic causes of Parkinson's disease (PD). The LRRK2 PD-associated mutations LRRK2G2019S and LRRK2R1441C, located in the kinase domain and in the ROC-COR domain, respectively, have been demonstrated to impair mitochondrial function. Here, we sought to further our understanding of mitochondrial health and mitophagy by integrating data from LRRK2R1441C rat primary cortical and human induced pluripotent stem cell-derived dopamine (iPSC-DA) neuronal cultures as models of PD. We found that LRRK2R1441C neurons exhibit decreased mitochondrial membrane potential, impaired mitochondrial function and decreased basal mitophagy levels. Mitochondrial morphology was altered in LRRK2R1441C iPSC-DA but not in cortical neuronal cultures or aged striatal tissue, indicating a cell-type-specific phenotype. Additionally, LRRK2R1441C but not LRRK2G2019S neurons demonstrated decreased levels of the mitophagy marker pS65Ub in response to mitochondrial damage, which could disrupt degradation of damaged mitochondria. This impaired mitophagy activation and mitochondrial function were not corrected by the LRRK2 inhibitor MLi-2 in LRRK2R1441C iPSC-DA neuronal cultures. Furthermore, we demonstrate LRRK2 interaction with MIRO1, a protein necessary to stabilize and to anchor mitochondria for transport, occurs at mitochondria, in a genotype-independent manner. Despite this, we found that degradation of MIRO1 was impaired in LRRK2R1441C cultures upon induced mitochondrial damage, suggesting a divergent mechanism from the LRRK2G2019S mutation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Humanos , Ratas , Animales , Anciano , Enfermedad de Parkinson/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mitofagia , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Mitocondrias/metabolismo
2.
Mol Psychiatry ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361127

RESUMEN

Alzheimer's disease (AD) is an age-related neurodegenerative condition and the most common type of dementia, characterised by pathological accumulation of extracellular plaques and intracellular neurofibrillary tangles that mainly consist of amyloid-ß (Aß) and hyperphosphorylated tau aggregates, respectively. Previous studies in mouse models with a targeted knock-out of the microtubule-associated protein tau (Mapt) gene demonstrated that Aß-driven toxicity is tau-dependent. However, human cellular models with chronic tau lowering remain unexplored. In this study, we generated stable tau-depleted human induced pluripotent stem cell (iPSC) isogenic panels from two healthy individuals using CRISPR-Cas9 technology. We then differentiated these iPSCs into cortical neurons in vitro in co-culture with primary rat cortical astrocytes before conducting electrophysiological and imaging experiments for a wide range of disease-relevant phenotypes. Both AD brain derived and recombinant Aß were used in this study to elicit toxic responses from the iPSC-derived cortical neurons. We showed that tau depletion in human iPSC-derived cortical neurons caused considerable reductions in neuronal activity without affecting synaptic density. We also observed neurite outgrowth impairments in two of the tau-depleted lines used. Finally, tau depletion protected neurons from adverse effects by mitigating the impact of exogenous Aß-induced hyperactivity, deficits in retrograde axonal transport of mitochondria, and neurodegeneration. Our study established stable human iPSC isogenic panels with chronic tau depletion from two healthy individuals. Cortical neurons derived from these iPSC lines showed that tau is essential in Aß-driven hyperactivity, axonal transport deficits, and neurodegeneration, consistent with studies conducted in Mapt-/- mouse models. These findings highlight the protective effects of chronic tau lowering strategies in AD pathogenesis and reinforce the potential in clinical settings. The tau-depleted human iPSC models can now be applied at scale to investigate the involvement of tau in disease-relevant pathways and cell types.

3.
Eur J Neurosci ; 59(6): 1242-1259, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37941514

RESUMEN

Ca2+ entry into nigrostriatal dopamine (DA) neurons and axons via L-type voltage-gated Ca2+ channels (LTCCs) contributes, respectively, to pacemaker activity and DA release and has long been thought to contribute to vulnerability to degeneration in Parkinson's disease. LTCC function is greater in DA axons and neurons from substantia nigra pars compacta than from ventral tegmental area, but this is not explained by channel expression level. We tested the hypothesis that LTCC control of DA release is governed rather by local mechanisms, focussing on candidate biological factors known to operate differently between types of DA neurons and/or be associated with their differing vulnerability to parkinsonism, including biological sex, α-synuclein, DA transporters (DATs) and calbindin-D28k (Calb1). We detected evoked DA release ex vivo in mouse striatal slices using fast-scan cyclic voltammetry and assessed LTCC support of DA release by detecting the inhibition of DA release by the LTCC inhibitors isradipine or CP8. Using genetic knockouts or pharmacological manipulations, we identified that striatal LTCC support of DA release depended on multiple intersecting factors, in a regionally and sexually divergent manner. LTCC function was promoted by factors associated with Parkinsonian risk, including male sex, α-synuclein, DAT and a dorsolateral co-ordinate, but limited by factors associated with protection, that is, female sex, glucocerebrosidase activity, Calb1 and ventromedial co-ordinate. Together, these data show that LTCC function in DA axons and isradipine effect are locally governed and suggest they vary in a manner that in turn might impact on, or reflect, the cellular stress that leads to parkinsonian degeneration.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Femenino , Ratones , Animales , Masculino , Isradipino/farmacología , Isradipino/metabolismo , Dopamina/metabolismo , Canales de Calcio Tipo L/metabolismo , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Factores de Riesgo , Calcio/metabolismo
4.
J Biol Chem ; 297(6): 101375, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34736896

RESUMEN

Synucleins, a family of three proteins highly expressed in neurons, are predominantly known for the direct involvement of α-synuclein in the etiology and pathogenesis of Parkinson's and certain other neurodegenerative diseases, but their precise physiological functions are still not fully understood. Previous studies have demonstrated the importance of α-synuclein as a modulator of various mechanisms implicated in chemical neurotransmission, but information concerning the involvement of other synuclein family members, ß-synuclein and γ-synuclein, in molecular processes within presynaptic terminals is limited. Here, we demonstrated that the vesicular monoamine transporter 2-dependent dopamine uptake by synaptic vesicles isolated from the striatum of mice lacking ß-synuclein is significantly reduced. Reciprocally, reintroduction, either in vivo or in vitro, of ß-synuclein but not α-synuclein or γ-synuclein improves uptake by triple α/ß/γ-synuclein-deficient striatal vesicles. We also showed that the resistance of dopaminergic neurons of the substantia nigra pars compacta to subchronic administration of the Parkinson's disease-inducing prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine depends on the presence of ß-synuclein but only when one or both other synucleins are absent. Furthermore, proteomic analysis of synuclein-deficient synaptic vesicles versus those containing only ß-synuclein revealed differences in their protein compositions. We suggest that the observed potentiation of dopamine uptake by ß-synuclein might be caused by different protein architecture of the synaptic vesicles. It is also feasible that such structural changes improve synaptic vesicle sequestration of 1-methyl-4-phenylpyridinium, a toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which would explain why dopaminergic neurons expressing ß-synuclein and lacking α-synuclein and/or γ-synuclein are resistant to this neurotoxin.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Muerte Celular/efectos de los fármacos , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Vesículas Sinápticas/metabolismo , Sinucleína beta/fisiología , Animales , Ratones , Ratones Noqueados , Sinucleína beta/metabolismo
5.
Hum Mol Genet ; 28(16): 2696-2710, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039583

RESUMEN

Lysosomal dysfunction lies at the centre of the cellular mechanisms underlying Parkinson's disease although the precise underlying mechanisms remain unknown. We investigated the role of leucine-rich repeat kinase 2 (LRRK2) on lysosome biology and the autophagy pathway in primary neurons expressing the human LRRK2-G2019S or LRKK2-R1441C mutant or the human wild-type (hWT-LRRK2) genomic locus. The expression of LRRK2-G2019S or hWT-LRRK2 inhibited autophagosome production, whereas LRRK2-R1441C induced a decrease in autophagosome/lysosome fusion and increased lysosomal pH. In vivo data from the cortex and substantia nigra pars compacta of aged LRRK2 transgenic animals revealed alterations in autophagosome puncta number reflecting those phenotypes seen in vitro. Using the two selective and potent LRRK2 kinase inhibitors, MLi-2 and PF-06447475, we demonstrated that the LRRK2-R1441C-mediated decrease in autolysosome maturation is not dependent on LRRK2 kinase activity. We showed that hWT-LRRK2 and LRRK2-G2019S bind to the a1 subunit of vATPase, which is abolished by the LRRK2-R1441C mutation, leading to a decrease in a1 protein and cellular mislocalization. Modulation of lysosomal zinc increased vATPase a1 protein levels and rescued the LRRK2-R1441C-mediated cellular phenotypes. Our work defines a novel interaction between the LRRK2 protein and the vATPase a1 subunit and demonstrates a mode of action by which drugs may rescue lysosomal dysfunction. These results demonstrate the importance of LRRK2 in lysosomal biology, as well as the critical role of the lysosome in PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Factores de Edad , Animales , Autofagosomas/metabolismo , Autofagia/genética , Biomarcadores , Señalización del Calcio , Femenino , Expresión Génica , Concentración de Iones de Hidrógeno , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Mutación , Neuronas/metabolismo , Fenotipo , Unión Proteica , Ratas , ATPasas de Translocación de Protón Vacuolares/química , Zinc/metabolismo
6.
Rapid Commun Mass Spectrom ; 34(16): e8839, 2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32436593

RESUMEN

Ecologists often need to make choices about what body parts (tissues or organs) of an animal to sample. The decision is typically guided by the need to treat animals as humanely as possible, as well as the information that different body parts can provide. When using stable isotopes, decisions are also influenced by whether specimens would require preservation, and whether they have properties (such as high lipid concentrations) that would influence measurements. Sometimes we cannot use a preferred tissue (for example, because of ethical or logistical constraints), and in such cases an ability to reliably predict stable isotope composition for one tissue from data yielded by another would be useful. METHODS: In this study we analysed multiple tissues (skin, whole blood, red blood cells, plasma and nail) from green turtles (Chelonia mydas) to evaluate variation in C:N ratios, and test hypotheses about the intercept and slope of regressions of stable carbon and nitrogen isotope compositions among tissues. RESULTS: Regression models revealed that linear relationships were present for most comparisons, except those involving the δ13 C of skin, and the slopes (ß1 ) of most regressions were different from unity. The C:N ratios of skin were significantly higher and more variable than those of other tissues. The δ13 C and δ15 N of nail were highly correlated with those of the whole blood, red blood cells and plasma. Nail and red blood cells showed low variation in C:N. CONCLUSIONS: The patterns in slopes of regressions indicate that comparisons of measurements yielded by different tissues of wild animals are complicated by the fact that the tissues are unlikely to be in isotopic equilibrium with their diet. Of the tissues used in this study, nail is simple to collect, requires minimal disturbance to the animal and no special preservation; these traits should make it attractive to turtle ecologists, but more information is needed on aspects such as growth rates.


Asunto(s)
Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Tortugas , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Modelos Lineales , Masculino , Piel/química , Tortugas/sangre , Australia Occidental
7.
Neurobiol Dis ; 129: 56-66, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31085228

RESUMEN

Non-neuronal cell types such as astrocytes can contribute to Parkinson's disease (PD) pathology. The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is one of the most common known causes of familial PD. To characterize its effect on astrocytes, we developed a protocol to produce midbrain-patterned astrocytes from human induced pluripotent stem cells (iPSCs) derived from PD LRRK2 G2019S patients and healthy controls. RNA sequencing analysis revealed the downregulation of genes involved in the extracellular matrix in PD cases. In particular, transforming growth factor beta 1 (TGFB1), which has been shown to inhibit microglial inflammatory response in a rat model of PD, and matrix metallopeptidase 2 (MMP2), which has been shown to degrade α-synuclein aggregates, were found to be down-regulated in LRRK2 G2019S astrocytes. Our findings suggest that midbrain astrocytes carrying the LRRK2 G2019S mutation may have reduced neuroprotective capacity and may contribute to the development of PD pathology.


Asunto(s)
Astrocitos/metabolismo , Metaloproteinasa 2 de la Matriz/biosíntesis , Enfermedad de Parkinson/metabolismo , Factor de Crecimiento Transformador beta1/biosíntesis , Anciano , Regulación hacia Abajo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/genética , Análisis de Secuencia de ARN
8.
Neurobiol Dis ; 127: 512-526, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30954703

RESUMEN

BACKGROUND: Mutations in LRRK2 are the most common cause of autosomal dominant Parkinson's disease, and the relevance of LRRK2 to the sporadic form of the disease is becoming ever more apparent. It is therefore essential that studies are conducted to improve our understanding of the cellular role of this protein. Here we use multiple models and techniques to identify the pathways through which LRRK2 mutations may lead to the development of Parkinson's disease. METHODS: A novel integrated transcriptomics and proteomics approach was used to identify pathways that were significantly altered in iPSC-derived dopaminergic neurons carrying the LRRK2-G2019S mutation. Western blotting, immunostaining and functional assays including FM1-43 analysis of synaptic vesicle endocytosis were performed to confirm these findings in iPSC-derived dopaminergic neuronal cultures carrying either the LRRK2-G2019S or the LRRK2-R1441C mutation, and LRRK2 BAC transgenic rats, and post-mortem human brain tissue from LRRK2-G2019S patients. RESULTS: Our integrated -omics analysis revealed highly significant dysregulation of the endocytic pathway in iPSC-derived dopaminergic neurons carrying the LRRK2-G2019S mutation. Western blot analysis confirmed that key endocytic proteins including endophilin I-III, dynamin-1, and various RAB proteins were downregulated in these cultures and in cultures carrying the LRRK2-R1441C mutation, compared with controls. We also found changes in expression of 25 RAB proteins. Changes in endocytic protein expression led to a functional impairment in clathrin-mediated synaptic vesicle endocytosis. Further to this, we found that the endocytic pathway was also perturbed in striatal tissue of aged LRRK2 BAC transgenic rats overexpressing either the LRRK2 wildtype, LRRK2-R1441C or LRRK2-G2019S transgenes. Finally, we found that clathrin heavy chain and endophilin I-III levels are increased in human post-mortem tissue from LRRK2-G2019S patients compared with controls. CONCLUSIONS: Our study demonstrates extensive alterations across the endocytic pathway associated with LRRK2 mutations in iPSC-derived dopaminergic neurons and BAC transgenic rats, as well as in post-mortem brain tissue from PD patients carrying a LRRK2 mutation. In particular, we find evidence of disrupted clathrin-mediated endocytosis and suggest that LRRK2-mediated PD pathogenesis may arise through dysregulation of this process.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Endocitosis/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Animales , Perfilación de la Expresión Génica , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteómica , Ratas , Ratas Transgénicas , Vesículas Sinápticas/genética
9.
Hum Mol Genet ; 25(5): 951-63, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26744332

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) lead to late-onset, autosomal dominant Parkinson's disease, characterized by the degeneration of dopamine neurons of the substantia nigra pars compacta, a deficit in dopamine neurotransmission and the development of motor and non-motor symptoms. The most prevalent Parkinson's disease LRRK2 mutations are located in the kinase (G2019S) and GTPase (R1441C) encoding domains of LRRK2. To better understand the sequence of events that lead to progressive neurophysiological deficits in vulnerable neurons and circuits in Parkinson's disease, we have generated LRRK2 bacterial artificial chromosome transgenic rats expressing either G2019S or R1441C mutant, or wild-type LRRK2, from the complete human LRRK2 genomic locus, including endogenous promoter and regulatory regions. Aged (18-21 months) G2019S and R1441C mutant transgenic rats exhibit L-DOPA-responsive motor dysfunction, impaired striatal dopamine release as determined by fast-scan cyclic voltammetry, and cognitive deficits. In addition, in vivo recordings of identified substantia nigra pars compacta dopamine neurons in R1441C LRRK2 transgenic rats reveal an age-dependent reduction in burst firing, which likely results in further reductions to striatal dopamine release. These alterations to dopamine circuit function occur in the absence of neurodegeneration or abnormal protein accumulation within the substantia nigra pars compacta, suggesting that nigrostriatal dopamine dysfunction precedes detectable protein aggregation and cell death in the development of Parkinson's disease. In conclusion, our longitudinal deep-phenotyping provides novel insights into how the genetic burden arising from human mutant LRRK2 manifests as early pathophysiological changes to dopamine circuit function and highlights a potential model for testing Parkinson's therapeutics.


Asunto(s)
Envejecimiento/metabolismo , Antiparkinsonianos/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Levodopa/farmacología , Mutación , Enfermedad de Parkinson/genética , Potenciales de Acción , Envejecimiento/patología , Sustitución de Aminoácidos , Animales , Muerte Celular/genética , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Masculino , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Regiones Promotoras Genéticas , Dominios Proteicos , Ratas , Ratas Transgénicas , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología
10.
Am J Physiol Cell Physiol ; 310(7): C520-41, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26718628

RESUMEN

Although numerous protocols have been developed for differentiation of neurons from a variety of pluripotent stem cells, most have concentrated on being able to specify effectively appropriate neuronal subtypes and few have been designed to enhance or accelerate functional maturity. Of those that have, most employ time courses of functional maturation that are rather protracted, and none have fully characterized all aspects of neuronal function, from spontaneous action potential generation through to postsynaptic receptor maturation. Here, we describe a simple protocol that employs the sequential addition of just two supplemented media that have been formulated to separate the two key phases of neural differentiation, the neurogenesis and synaptogenesis, each characterized by different signaling requirements. Employing these media, this new protocol synchronized neurogenesis and enhanced the rate of maturation of pluripotent stem cell-derived neural precursors. Neurons differentiated using this protocol exhibited large cell capacitance with relatively hyperpolarized resting membrane potentials; moreover, they exhibited augmented: 1) spontaneous electrical activity; 2) regenerative induced action potential train activity; 3) Na(+) current availability, and 4) synaptic currents. This was accomplished by rapid and uniform development of a mature, inhibitory GABAAreceptor phenotype that was demonstrated by Ca(2+) imaging and the ability of GABAAreceptor blockers to evoke seizurogenic network activity in multielectrode array recordings. Furthermore, since this protocol can exploit expanded and frozen prepatterned neural progenitors to deliver mature neurons within 21 days, it is both scalable and transferable to high-throughput platforms for the use in functional screens.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Medios de Cultivo/química , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Western Blotting , Ciclo Celular/fisiología , Línea Celular , Técnicas de Cocultivo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Electrónica de Rastreo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Técnicas de Placa-Clamp , Receptores de GABA-A/metabolismo
11.
Acute Med ; 14(2): 69-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26305084

RESUMEN

Pleural effusions are a common finding in patients admitted on the medical take. This case decribes a patient using peritoneal dialysis who presented with progressive dyspnoea. Clinical examination and chest x-ray confirmed the presence of a pleural effusion. Thoracocentesis confirmed a 'sweet' effusion (higher pleural: serum glucose content), suggesting a pleuro-peritoneal leak. Optimal management involved switch from peritoneal to haemodialysis and referral to a specialised renal unit. This case highlights the need to consider the diagnosis of pleuro-peritoneal leak in patients using peritoneal dialysis who present to the acute medical unit with pleural effusion.


Asunto(s)
Disnea/etiología , Fístula/diagnóstico , Vasculitis por IgA/complicaciones , Fallo Renal Crónico/terapia , Derrame Pleural/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Diálisis Peritoneal/métodos , Radiografía , Diálisis Renal , Toracocentesis
12.
J Biol Chem ; 288(35): 25266-25274, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23867462

RESUMEN

Dysfunction of two structurally and functionally related proteins, FUS and TAR DNA-binding protein of 43 kDa (TDP-43), implicated in crucial steps of cellular RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. The proteins are intrinsically aggregate-prone and form non-amyloid inclusions in the affected nervous tissues, but the role of these proteinaceous aggregates in disease onset and progression is still uncertain. To address this question, we designed a variant of FUS, FUS 1-359, which is predominantly cytoplasmic, highly aggregate-prone, and lacks a region responsible for RNA recognition and binding. Expression of FUS 1-359 in neurons of transgenic mice, at a level lower than that of endogenous FUS, triggers FUSopathy associated with severe damage of motor neurons and their axons, neuroinflammatory reaction, and eventual loss of selective motor neuron populations. These pathological changes cause abrupt development of a severe motor phenotype at the age of 2.5-4.5 months and death of affected animals within several days of onset. The pattern of pathology in transgenic FUS 1-359 mice recapitulates several key features of human ALS with the dynamics of the disease progression compressed in line with shorter mouse lifespan. Our data indicate that neuronal FUS aggregation is sufficient to cause ALS-like phenotype in transgenic mice.


Asunto(s)
Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/metabolismo , Axones/metabolismo , Neuronas Motoras/metabolismo , Señales de Localización Nuclear , Proteína FUS de Unión a ARN/biosíntesis , Eliminación de Secuencia , Secuencias de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Axones/patología , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/patología , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Fenotipo , ARN , Proteína FUS de Unión a ARN/genética
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220378, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38368934

RESUMEN

Endocytosis is a key cellular pathway required for the internalization of cellular nutrients, lipids and receptor-bound cargoes. It is also critical for the recycling of cellular components, cellular trafficking and membrane dynamics. The endocytic pathway has been consistently implicated in Alzheimer's disease (AD) through repeated genome-wide association studies and the existence of rare coding mutations in endocytic genes. BIN1 and PICALM are two of the most significant late-onset AD risk genes after APOE and are both key to clathrin-mediated endocytic biology. Pathological studies also demonstrate that endocytic dysfunction is an early characteristic of late-onset AD, being seen in the prodromal phase of the disease. Different cell types of the brain have specific requirements of the endocytic pathway. Neurons require efficient recycling of synaptic vesicles and microglia use the specialized form of endocytosis-phagocytosis-for their normal function. Therefore, disease-associated changes in endocytic genes will have varied impacts across different cell types, which remains to be fully explored. Given the genetic and pathological evidence for endocytic dysfunction in AD, understanding how such changes and the related cell type-specific vulnerabilities impact normal cellular function and contribute to disease is vital and could present novel therapeutic opportunities. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Estudio de Asociación del Genoma Completo , Endocitosis/fisiología , Endosomas , Neuronas
14.
Cell Rep ; 43(3): 113784, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38386560

RESUMEN

The brain is spatially organized and contains unique cell types, each performing diverse functions and exhibiting differential susceptibility to neurodegeneration. This is exemplified in Parkinson's disease with the preferential loss of dopaminergic neurons of the substantia nigra pars compacta. Using a Parkinson's transgenic model, we conducted a single-cell spatial transcriptomic and dopaminergic neuron translatomic analysis of young and old mouse brains. Through the high resolving capacity of single-cell spatial transcriptomics, we provide a deep characterization of the expression features of dopaminergic neurons and 27 other cell types within their spatial context, identifying markers of healthy and aging cells, spanning Parkinson's relevant pathways. We integrate gene enrichment and genome-wide association study data to prioritize putative causative genes for disease investigation, identifying CASR as a regulator of dopaminergic calcium handling. These datasets represent the largest public resource for the investigation of spatial gene expression in brain cells in health, aging, and disease.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Ratones , Animales , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Transcriptoma/genética , Sustancia Negra/metabolismo , Estudio de Asociación del Genoma Completo , Envejecimiento/genética , Perfilación de la Expresión Génica
15.
J Biol Chem ; 287(53): 44471-7, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23129765

RESUMEN

In neuronal synapses, neurotransmitter-loaded vesicles fuse with presynaptic plasma membrane in a complex sequence of tightly regulated events. The assembly of specialized SNARE complexes plays a pivotal role in this process. The function of the chaperone cysteine string protein α (CSPα) is important for synaptic SNARE complex formation, and mice lacking this protein develop severe synaptic dysfunction and neurodegeneration that lead to their death within 3 months after birth. Another presynaptic protein, α-synuclein, also potentiates SNARE complex formation, and its overexpression rescues the phenotype of CSPα null mutant mice, although these two proteins use different mechanisms to achieve this effect. α-Synuclein is a member of a family of three related proteins whose structural similarity suggests functional redundancy. Here, we assessed whether γ-synuclein shares the ability of α-synuclein to bind synaptic vesicles and ameliorate neurodegeneration caused by CSPα deficiency in vivo. Although the N-terminal lipid-binding domains of the two synucleins showed similar affinity for purified synaptic vesicles, the C-terminal domain of γ-synuclein was not able to interact with synaptobrevin-2/VAMP2. Consequently, overexpression of γ-synuclein did not have any noticeable effect on the phenotype of CSPα null mutant mice. Our data suggest that the functions of α- and γ-synucleins in presynaptic terminals are not fully redundant.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , alfa-Sinucleína/metabolismo , gamma-Sinucleína/metabolismo , Animales , Células Cultivadas , Femenino , Proteínas del Choque Térmico HSP40/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Sinapsis/química , Sinapsis/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética , gamma-Sinucleína/química , gamma-Sinucleína/genética
16.
J Neurosci ; 31(20): 7264-74, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21593311

RESUMEN

The synucleins (α, ß, and γ) are highly homologous proteins thought to play a role in regulating neurotransmission and are found abundantly in presynaptic terminals. To overcome functional overlap between synuclein proteins and to understand their role in presynaptic signaling from mesostriatal dopaminergic neurons, we produced mice lacking all three members of the synuclein family. The effect on the mesostriatal system was assessed in adult (4- to 14-month-old) animals using a combination of behavioral, biochemical, histological, and electrochemical techniques. Adult triple-synuclein-null (TKO) mice displayed no overt phenotype and no change in the number of midbrain dopaminergic neurons. TKO mice were hyperactive in novel environments and exhibited elevated evoked release of dopamine in the striatum detected with fast-scan cyclic voltammetry. Elevated dopamine release was specific to the dorsal not ventral striatum and was accompanied by a decrease of dopamine tissue content. We confirmed a normal synaptic ultrastructure and a normal abundance of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes in the dorsal striatum. Treatment of TKO animals with drugs affecting dopamine metabolism revealed normal rate of synthesis, enhanced turnover, and reduced presynaptic striatal dopamine stores. Our data uniquely reveal the importance of the synuclein proteins in regulating neurotransmitter release from specific populations of midbrain dopamine neurons through mechanisms that differ from those reported in other neurons. The finding that the complete loss of synucleins leads to changes in dopamine handling by presynaptic terminals specifically in those regions preferentially vulnerable in Parkinson's disease may ultimately inform on the selectivity of the disease process.


Asunto(s)
Cuerpo Estriado/fisiología , Sustancia Negra/fisiología , alfa-Sinucleína/deficiencia , Sinucleína beta/deficiencia , gamma-Sinucleína/deficiencia , Animales , Dopamina/fisiología , Masculino , Mesencéfalo/citología , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/clasificación , Neuronas/metabolismo , Neuronas/fisiología , Neurotransmisores/genética , Neurotransmisores/metabolismo , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , alfa-Sinucleína/genética , Sinucleína beta/genética , gamma-Sinucleína/genética
17.
Cells ; 11(21)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359810

RESUMEN

Microglia, the main immune modulators of the central nervous system, have key roles in both the developing and adult brain. These functions include shaping healthy neuronal networks, carrying out immune surveillance, mediating inflammatory responses, and disposing of unwanted material. A wide variety of pathological conditions present with microglia dysregulation, highlighting the importance of these cells in both normal brain function and disease. Studies into microglial function in the context of both health and disease thus have the potential to provide tremendous insight across a broad range of research areas. In vitro culture of microglia, using primary cells, cell lines, or induced pluripotent stem cell derived microglia, allows researchers to generate reproducible, robust, and quantifiable data regarding microglia function. A broad range of assays have been successfully developed and optimised for characterizing microglial morphology, mediation of inflammation, endocytosis, phagocytosis, chemotaxis and random motility, and mediation of immunometabolism. This review describes the main functions of microglia, compares existing protocols for measuring these functions in vitro, and highlights common pitfalls and future areas for development. We aim to provide a comprehensive methodological guide for researchers planning to characterise microglial functions within a range of contexts and in vitro models.


Asunto(s)
Microglía , Fagocitosis , Microglía/metabolismo , Fagocitosis/fisiología , Quimiotaxis/fisiología , Sistema Nervioso Central , Encéfalo/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-34831925

RESUMEN

Primary health care physicians are increasingly offering telehealth services to patients not only for its cost and time saving advantages but for the additional benefits telehealth can provide for patients with type 2 diabetes (T2D) such as improved self-management behaviours. To support the development of telehealth based T2D clinical care models in primary health care settings, a narrative synthesis and meta-analysis of randomised controlled trial studies was completed for 29 studies that evaluated the effect of one or more types of telehealth interventions on HbA1c levels compared to usual care alone. Results from the random effects meta-analysis demonstrated that telehealth interventions had a stronger influence on HbA1c compared to usual care with a mean difference in HbA1c \% -0.18 (CI -0.35, -0.01), p = 0.04. Results from the subgroup meta-analysis demonstrated that telehealth interventions, when grouped by type of telemonitoring (mHealth and telephone communication), all have a stronger effect on lowering HbA1c levels; however, none of these findings were significant. Key findings from this review demonstrate that telehealth interventions that address T2D self-management behaviours and have higher levels of health care provider engagement, have greater effects on lowering HbA1c levels compared to usual care alone.


Asunto(s)
Diabetes Mellitus Tipo 2 , Automanejo , Telemedicina , Adulto , Comunicación , Diabetes Mellitus Tipo 2/terapia , Humanos , Atención Primaria de Salud , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
Front Cell Neurosci ; 15: 658244, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935654

RESUMEN

Striatal dopamine transporters (DAT) powerfully regulate dopamine signaling, and can contribute risk to degeneration in Parkinson's disease (PD). DATs can interact with the neuronal protein α-synuclein, which is associated with the etiology and molecular pathology of idiopathic and familial PD. Here, we tested whether DAT function in governing dopamine (DA) uptake and release is modified in a human-α-synuclein-overexpressing (SNCA-OVX) transgenic mouse model of early PD. Using fast-scan cyclic voltammetry (FCV) in ex vivo acute striatal slices to detect DA release, and biochemical assays, we show that several aspects of DAT function are promoted in SNCA-OVX mice. Compared to background control α-synuclein-null mice (Snca-null), the SNCA-OVX mice have elevated DA uptake rates, and more pronounced effects of DAT inhibitors on evoked extracellular DA concentrations ([DA]o) and on short-term plasticity (STP) in DA release, indicating DATs play a greater role in limiting DA release and in driving STP. We found that DAT membrane levels and radioligand binding sites correlated with α-synuclein level. Furthermore, DAT function in Snca-null and SNCA-OVX mice could also be promoted by applying cholesterol, and using Tof-SIMS we found genotype-differences in striatal lipids, with lower striatal cholesterol in SNCA-OVX mice. An inhibitor of cholesterol efflux transporter ABCA1 or a cholesterol chelator in SNCA-OVX mice reduced the effects of DAT-inhibitors on evoked [DA]o. Together these data indicate that human α-synuclein in a mouse model of PD promotes striatal DAT function, in a manner supported by extracellular cholesterol, suggesting converging biology of α-synuclein and cholesterol that regulates DAT function and could impact DA function and PD pathophysiology.

20.
Front Neurosci ; 14: 498, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32523507

RESUMEN

It has been 15 years since the Leucine-rich repeat kinase 2 (LRRK2) gene was identified as the most common genetic cause for Parkinson's disease (PD). The two most common mutations are the LRRK2-G2019S, located in the kinase domain, and the LRRK2-R1441C, located in the ROC-COR domain. While the LRRK2-G2019S mutation is associated with increased kinase activity, the LRRK2-R1441C exhibits a decreased GTPase activity and altered kinase activity. Multiple lines of evidence have linked the LRRK2 protein with a role in the autophagy pathway and with lysosomal activity in neurons. Neurons rely heavily on autophagy to recycle proteins and process cellular waste due to their post-mitotic state. Additionally, lysosomal activity decreases with age which can potentiate the accumulation of α-synuclein, the pathological hallmark of PD, and subsequently lead to the build-up of Lewy bodies (LBs) observed in this disorder. This review provides an up to date summary of the LRRK2 field to understand its physiological role in the autophagy pathway in neurons and related cells. Careful assessment of how LRRK2 participates in the regulation of phagophore and autophagosome formation, autophagosome and lysosome fusion, lysosomal maturation, maintenance of lysosomal pH and calcium levels, and lysosomal protein degradation are addressed. The autophagy pathway is a complex cellular process and due to the variety of LRRK2 models studied in the field, associated phenotypes have been reported to be seemingly conflicting. This review provides an in-depth discussion of different models to assess the normal and disease-associated role of the LRRK2 protein on autophagic function. Given the importance of the autophagy pathway in Parkinson's pathogenesis it is particularly relevant to focus on the role of LRRK2 to discover novel therapeutic approaches that restore lysosomal protein degradation homeostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA