Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36017799

RESUMEN

Signals from the endothelium play a pivotal role in pancreatic lineage commitment. As such, the fate of the epithelial cells relies heavily on the spatiotemporal recruitment of the endothelial cells to the embryonic pancreas. Although it is known that VEGFA secreted by the epithelium recruits the endothelial cells to the specific domains within the developing pancreas, the mechanism that controls the timing of such recruitment is poorly understood. Here, we have assessed the role of focal adhesion kinase (FAK) in mouse pancreatic development based on our observation that the presence of the enzymatically active form of FAK (pFAK) in the epithelial cells is inversely correlated with vessel recruitment. To study the role of FAK in the pancreas, we conditionally deleted the gene encoding focal adhesion kinase in the developing mouse pancreas. We found that homozygous deletion of Fak (Ptk2) during embryogenesis resulted in ectopic epithelial expression of VEGFA, abnormal endothelial recruitment and a delay in endocrine and acinar cell differentiation. The heterozygous mutants were born with no pancreatic phenotype but displayed gradual acinar atrophy due to cell polarity defects in exocrine cells. Together, our findings imply a role for FAK in controlling the timing of pancreatic lineage commitment and/or differentiation in the embryonic pancreas by preventing endothelial recruitment to the embryonic pancreatic epithelium.


Asunto(s)
Células Endoteliales , Animales , Diferenciación Celular/genética , Proteína-Tirosina Quinasas de Adhesión Focal , Homocigoto , Ratones , Eliminación de Secuencia
2.
Nat Commun ; 15(1): 3740, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702347

RESUMEN

Insufficient functional ß-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing ß-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore ß-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.


Asunto(s)
Células Acinares , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animales , Células Secretoras de Insulina/metabolismo , Ratones , Células Acinares/metabolismo , Masculino , Insulina/metabolismo , Transdiferenciación Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/farmacología , Islotes Pancreáticos/metabolismo
3.
Diabetes ; 70(7): 1508-1518, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33906911

RESUMEN

In contrast to the skin and the gut, where somatic stem cells and their niche are well characterized, a definitive pancreatic multipotent cell population in the adult pancreas has yet to be revealed. Of particular interest is whether such cells may be endogenous in patients with diabetes, and if so, can they be used for therapeutic purposes? In the current study, we used two separate reporter lines to target Cre-recombinase expression to the Lgr5- or glucagon-expressing cells in the pancreas. We provide evidence for the existence of a population of cells within and in the proximity of the ducts that transiently express the stem-cell marker Lgr5 during late gestational stages. Careful timing of tamoxifen treatment in Lgr5EGFP-IRES-CreERT2 ;R26 Tomato mice allowed us to show that these Lgr5-expressing progenitor cells can differentiate into α-cells during pregnancy. Furthermore, we report on a spontaneous lineage conversion of α- to ß-cells specifically after parturition. The contribution of Lgr5 progeny to the ß-cell compartment through an α-cell intermediate phase early after pregnancy appears to be part of a novel mechanism that would counterbalance against excessive ß-cell mass reduction during ß-cell involution.


Asunto(s)
Linaje de la Célula , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , Páncreas/citología , Periodo Posparto/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Células Madre/citología , Animales , Apoptosis , Diferenciación Celular , Femenino , Ratones , Ratones Endogámicos C57BL
4.
J Vis Exp ; (146)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30985764

RESUMEN

Though there have been studies on the histopathological and behavioral effects of blast exposure, fewer have been dedicated to blast's cerebral vascular effects. Impact (i.e., non-blast) traumatic brain injury (TBI) is known to decrease pressure autoregulation in the cerebral vasculature in both humans and experimental animals. The hypothesis that blast-induced traumatic brain injury (bTBI), like impact TBI, results in impaired cerebral vascular reactivity was tested by measuring myogenic dilatory responses to reduced intravascular pressure in rodent middle cerebral arterial (MCA) segments from rats subjected to mild bTBI using an Advanced Blast Simulator (ABS) shock tube. Adult, male Sprague-Dawley rats were anesthetized, intubated, ventilated and prepared for Sham bTBI (identical manipulation and anesthesia except for blast injury) or mild bTBI. Rats were randomly assigned to receive Sham bTBI or mild bTBI followed by sacrifice 30 or 60 min post-injury. Immediately after bTBI, righting reflex (RR) suppression times were assessed, euthanasia at the time points post-injury was completed, the brain was harvested and the individual MCA segments were collected, mounted and pressurized. As the intraluminal pressure perfused through the arterial segments was reduced in 20 mmHg increments from 100 to 20 mmHg, MCA diameters were measured and recorded. With decreasing intraluminal pressure, MCA diameters steadily increased significantly above baseline in the Sham bTBI groups while MCA dilator responses were significantly reduced (p < 0.05) in both bTBI groups as evidenced by the impaired, smaller MCA diameters recorded for the bTBI groups. In addition, RR suppression in the bTBI groups was significantly (p < 0.05) higher than in the Sham bTBI groups. MCA's collected from the Sham bTBI groups exhibited typical vasodilatory properties to decreases in intraluminal pressure while MCA's collected following bTBI exhibited significantly impaired myogenic vasodilatory responses to reduced pressure that persisted for at least 60 min after bTBI.


Asunto(s)
Traumatismos por Explosión/complicaciones , Lesiones Traumáticas del Encéfalo/etiología , Arteria Cerebral Media/patología , Presión , Animales , Masculino , Ratas Sprague-Dawley
5.
J Neurotrauma ; 35(2): 375-392, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29160141

RESUMEN

To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO-), the effects of the administration of the ONOO- scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO- may contribute to blast-induced cerebral vascular dysfunction.


Asunto(s)
Traumatismos por Explosión/fisiopatología , Lesiones Traumáticas del Encéfalo/fisiopatología , Encéfalo/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Traumatismos por Explosión/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología , Depuradores de Radicales Libres/farmacología , Masculino , Penicilamina/análogos & derivados , Penicilamina/farmacología , Ácido Peroxinitroso/metabolismo , Ratas , Especies de Nitrógeno Reactivo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA