Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(41): 10299-10304, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30254152

RESUMEN

To sample marginalized and/or hard-to-reach populations, respondent-driven sampling (RDS) and similar techniques reach their participants via peer referral. Under a Markov model for RDS, previous research has shown that if the typical participant refers too many contacts, then the variance of common estimators does not decay like [Formula: see text], where n is the sample size. This implies that confidence intervals will be far wider than under a typical sampling design. Here we show that generalized least squares (GLS) can effectively reduce the variance of RDS estimates. In particular, a theoretical analysis indicates that the variance of the GLS estimator is [Formula: see text] We then derive two classes of feasible GLS estimators. The first class is based upon a Degree Corrected Stochastic Blockmodel for the underlying social network. The second class is based upon a rank-two model. It might be of independent interest that in both model classes, the theoretical results show that it is possible to estimate the spectral properties of the population network from a random walk sample of the nodes. These theoretical results point the way to entirely different classes of estimators that account for the network structure beyond node degree. Diagnostic plots help to identify situations where feasible GLS estimators are more appropriate. The computational experiments show the potential benefits and also indicate that there is room to further develop these estimators in practical settings.

2.
Proc Natl Acad Sci U S A ; 113(45): 12679-12684, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791058

RESUMEN

In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditiselegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA