Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Magn Reson Imaging ; 42(2): 436-45, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25407847

RESUMEN

BACKGROUND: To develop and optimize radiofrequency (RF) hardware for the detection of endogenous sodium ((23) Na) by 3.0 Tesla (T) MRI in the human prostate. METHODS: A transmit-only receive-only (TORO) RF system of resonators consisting of an unshielded, asymmetric, quadrature birdcage (transmit), and an endorectal (ER), linear, surface (receive) coil were developed and tested on a 3T MRI scanner. Two different ER receivers were constructed; a single-tuned ((23) Na) and a dual-tuned ((1) H/(23) Na). Both receivers were evaluated by the measurements of signal-to-noise ratio (SNR) and B1 homogeneity. For tissue sodium concentration (TSC) quantification, vials containing known sodium concentrations were incorporated into the ER. The system was used to measure the prostate TSC of three men (age 55 ± 5 years) with biopsy-proven prostate cancer. RESULTS: B1 field inhomogeneity of the asymmetric transmitter was estimated to be less than 5%. The mean SNR measured in a region of interest within the prostate using the single-tuned ER coil was 54.0 ± 4.6. The mean TSC in the central gland was 60.2 ± 5.7 mmol/L and in the peripheral gland was 70.5 ± 9.0 mmol/L. CONCLUSION: A TORO system was developed and optimized for (23) Na MRI of the human prostate which showed good sensitivity throughout the prostate for quantitative measurement of TSC.


Asunto(s)
Espectroscopía de Resonancia Magnética/instrumentación , Próstata/química , Neoplasias de la Próstata/química , Sodio/análisis , Transductores , Biomarcadores/análisis , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Masculino , Persona de Mediana Edad , Protección Radiológica/instrumentación , Ondas de Radio , Radiofármacos/análisis , Recto , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Isótopos de Sodio/análisis
2.
AJR Am J Roentgenol ; 204(1): 83-91, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25539241

RESUMEN

OBJECTIVE: The purpose of this article is to compare transrectal ultrasound (TRUS) biopsy accuracies of operators with different levels of prostate MRI experience using cognitive registration versus MRI-TRUS fusion to assess the preferred method of TRUS prostate biopsy for MRI-identified lesions. SUBJECTS AND METHODS; One hundred patients from a prospective prostate MRI-TRUS fusion biopsy study were reviewed to identify all patients with clinically significant prostate adenocarcinoma (PCA) detected on MRI-targeted biopsy. Twenty-five PCA tumors were incorporated into a validated TRUS prostate biopsy simulator. Three prostate biopsy experts, each with different levels of experience in prostate MRI and MRI-TRUS fusion biopsy, performed a total of 225 simulated targeted biopsies on the MRI lesions as well as regional biopsy targets. Simulated biopsies performed using cognitive registration with 2D TRUS and 3D TRUS were compared with biopsies performed under MRI-TRUS fusion. RESULTS: Two-dimensional and 3D TRUS sampled only 48% and 45% of clinically significant PCA MRI lesions, respectively, compared with 100% with MRI-TRUS fusion. Lesion sampling accuracy did not statistically significantly vary according to operator experience or tumor volume. MRI-TRUS fusion-naïve operators showed consistent errors in targeting of the apex, midgland, and anterior targets, suggesting that there is biased error in cognitive registration. The MRI-TRUS fusion expert correctly targeted the prostate apex; however, his midgland and anterior mistargeting was similar to that of the less-experienced operators. CONCLUSION: MRI-targeted TRUS-guided prostate biopsy using cognitive registration appears to be inferior to MRI-TRUS fusion, with fewer than 50% of clinically significant PCA lesions successfully sampled. No statistically significant difference in biopsy accuracy was seen according to operator experience with prostate MRI or MRI-TRUS fusion.


Asunto(s)
Competencia Clínica/estadística & datos numéricos , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico/estadística & datos numéricos , Imagen por Resonancia Magnética Intervencional/estadística & datos numéricos , Neoplasias de la Próstata/patología , Técnica de Sustracción/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis y Desempeño de Tareas
3.
Radiology ; 263(3): 856-64, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22474671

RESUMEN

PURPOSE: To develop and evaluate a technique for the registration of in vivo prostate magnetic resonance (MR) images to digital histopathologic images by using image-guided specimen slicing based on strand-shaped fiducial markers relating specimen imaging to histopathologic examination. MATERIALS AND METHODS: The study was approved by the institutional review board (the University of Western Ontario Health Sciences Research Ethics Board, London, Ontario, Canada), and written informed consent was obtained from all patients. This work proposed and evaluated a technique utilizing developed fiducial markers and real-time three-dimensional visualization in support of image guidance for ex vivo prostate specimen slicing parallel to the MR imaging planes prior to digitization, simplifying the registration process. Means, standard deviations, root-mean-square errors, and 95% confidence intervals are reported for all evaluated measurements. RESULTS: The slicing error was within the 2.2 mm thickness of the diagnostic-quality MR imaging sections, with a tissue block thickness standard deviation of 0.2 mm. Rigid registration provided negligible postregistration overlap of the smallest clinically important tumors (0.2 cm(3)) at histologic examination and MR imaging, whereas the tested nonrigid registration method yielded a mean target registration error of 1.1 mm and provided useful coregistration of such tumors. CONCLUSION: This method for the registration of prostate digital histopathologic images to in vivo MR images acquired by using an endorectal receive coil was sufficiently accurate for coregistering the smallest clinically important lesions with 95% confidence.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Próstata/patología , Neoplasias de la Próstata/patología , Medios de Contraste , Marcadores Fiduciales , Gadolinio DTPA , Humanos , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional/instrumentación , Imagen por Resonancia Magnética Intervencional , Masculino , Próstata/cirugía , Prostatectomía , Neoplasias de la Próstata/cirugía
4.
J Clin Ultrasound ; 40(9): 586-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22252973

RESUMEN

Fetal intra-abdominal umbilical vein varix is a rare condition characterized by focal dilatation of the umbilical vein of the fetus. We report a case of fetal intra-abdominal umbilical vein varix associated with additional sonographic abnormalities and detected at 31 weeks' gestation. Several follow-up sonographic examinations were performed, and the prenatal findings were confirmed on postnatal ultrasound. The diagnosis was facilitated by the use of three-dimensional power Doppler sonography.


Asunto(s)
Enfermedades Fetales/diagnóstico por imagen , Imagenología Tridimensional/métodos , Ultrasonografía Prenatal/métodos , Venas Umbilicales/anomalías , Venas Umbilicales/diagnóstico por imagen , Várices/diagnóstico por imagen , Abdomen/irrigación sanguínea , Abdomen/diagnóstico por imagen , Adulto , Resultado Fatal , Femenino , Humanos , Embarazo , Ultrasonografía Doppler en Color/métodos , Venas Umbilicales/embriología
5.
Phys Med Biol ; 67(7)2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35240585

RESUMEN

Three-dimensional (3D) transrectal ultrasound (TRUS) is utilized in prostate cancer diagnosis and treatment, necessitating time-consuming manual prostate segmentation. We have previously developed an automatic 3D prostate segmentation algorithm involving deep learning prediction on radially sampled 2D images followed by 3D reconstruction, trained on a large, clinically diverse dataset with variable image quality. As large clinical datasets are rare, widespread adoption of automatic segmentation could be facilitated with efficient 2D-based approaches and the development of an image quality grading method. The complete training dataset of 6761 2D images, resliced from 206 3D TRUS volumes acquired using end-fire and side-fire acquisition methods, was split to train two separate networks using either end-fire or side-fire images. Split datasets were reduced to 1000, 500, 250, and 100 2D images. For deep learning prediction, modified U-Net and U-Net++ architectures were implemented and compared using an unseen test dataset of 40 3D TRUS volumes. A 3D TRUS image quality grading scale with three factors (acquisition quality, artifact severity, and boundary visibility) was developed to assess the impact on segmentation performance. For the complete training dataset, U-Net and U-Net++ networks demonstrated equivalent performance, but when trained using split end-fire/side-fire datasets, U-Net++ significantly outperformed the U-Net. Compared to the complete training datasets, U-Net++ trained using reduced-size end-fire and side-fire datasets demonstrated equivalent performance down to 500 training images. For this dataset, image quality had no impact on segmentation performance for end-fire images but did have a significant effect for side-fire images, with boundary visibility having the largest impact. Our algorithm provided fast (<1.5 s) and accurate 3D segmentations across clinically diverse images, demonstrating generalizability and efficiency when employed on smaller datasets, supporting the potential for widespread use, even when data is scarce. The development of an image quality grading scale provides a quantitative tool for assessing segmentation performance.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Humanos , Masculino , Pelvis , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Ultrasonografía
6.
Med Phys ; 38(3): 1718-31, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21520885

RESUMEN

PURPOSE: Prostate biopsy is the clinical standard for the definitive diagnosis of prostate cancer. To overcome the limitations of 2D TRUS-guided biopsy systems when targeting preplanned locations, systems have been developed with 3D guidance to improve the accuracy of cancer detection. Prostate deformation due to needle insertion and biopsy gun firing is a potential source of error that can cause target misalignments during biopsies. METHODS: The authors used nonrigid registration of 2D TRUS images to quantify the deformation that occurs during the needle insertion and the biopsy gun firing procedure and compare this effect in biopsies performed using a hand-held TRUS probe to those performed using a mechanically assisted 3D TRUS-guided biopsy system. The authors calculated a spatially varying 95% confidence interval on the prostate tissue motion and analyzed this motion both as a function of distance to the biopsy needle and as a function of distance to the lower piercing point of the prostate. The former is relevant because biopsy targets lie along the needle axis, and the latter is of particular importance due to the reported high concentration of prostate cancer in the peripheral zone, a substantial portion of which lies on the posterior side of the prostate where biopsy needles enter the prostate after penetrating the rectal wall during transrectal biopsy. RESULTS: The results show that for both systems, the tissue deformation is such that throughout the length of the needle axis, including regions proximal to the lower piercing point, spherical tumors with a radius of 2.1 mm or more can be sampled with 95% confidence under the assumption of zero error elsewhere in the biopsy system. More deformation was observed in the direction orthogonal to the needle axis compared to the direction parallel to the needle axis; this is of particular importance given the long, narrow shape of the biopsy core. The authors measured lateral tissue motion proximal to the needle axis of not more than 1.5 mm, with 95% confidence. The authors observed a statistically significant and clinically insignificant maximum difference of 0.38 mm in the deformation, resulting from the hand-held and mechanically assisted systems along the needle axis, and the mechanical system resulted in a lower relative increase in deformation proximal to the needle axis during needle insertion, as well as lower variability of deformation during biopsy gun firing. CONCLUSIONS: Given the clinical need to biopsy tumors of volume greater than or equal to 0.5 cm3, corresponding to spherical tumors with a radius of 5 mm or more, the tissue motion induced by needle insertion and gun firing is an important consideration when setting the design specifications for TRUS-guided prostate biopsy systems.


Asunto(s)
Artefactos , Biopsia con Aguja/instrumentación , Fenómenos Mecánicos , Próstata/diagnóstico por imagen , Próstata/patología , Recto , Cirugía Asistida por Computador/instrumentación , Biopsia con Aguja/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Reproducibilidad de los Resultados , Cirugía Asistida por Computador/métodos , Ultrasonografía
7.
Radiology ; 254(2): 587-94, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20093529

RESUMEN

PURPOSE: To compare the accuracy of biopsy with two-dimensional (2D) transrectal ultrasonography (US) with that of biopsy with conventional three-dimensional (3D) transrectal US and biopsy with guided 3D transrectal US in the guidance of repeat prostate biopsy procedures in a prostate biopsy simulator. MATERIALS AND METHODS: The institutional review board approved this retrospective study. Five residents and five experts performed repeat biopsies with a biopsy simulator that contained the transrectal US prostate images of 10 patients who had undergone biopsy. Simulated repeat biopsies were performed with 2D transrectal US, conventional 3D transrectal US, and guided 3D transrectal US (an extension of 3D transrectal US that enables active display of biopsy targets). The modalities were compared on the basis of time per biopsy and how accurately simulated repeat biopsies could be guided to specific targets. The probability for successful biopsy of a repeat target was calculated for each modality. RESULTS: Guided 3D transrectal US was significantly (P < .01) more accurate for simulated biopsy of repeat targets than was 2D or 3D transrectal US, with a biopsy accuracy of 0.86 mm +/- 0.47 (standard deviation), 3.68 mm +/- 2.60, and 3.60 mm +/- 2.57, respectively. Experts had a 70% probability of sampling a prior biopsy target volume of 0.5 cm(3) with 2D transrectal US; however, the probability approached 100% with guided 3D transrectal US. Biopsy accuracy was not significantly different between experts and residents for any modality; however, experts were significantly (P < .05) faster than residents with each modality. CONCLUSION: Repeat biopsy of the prostate with 2D transrectal US has limited accuracy. Compared with 2D transrectal US, the biopsy accuracy of both experts and residents improved with guided 3D transrectal US but did not improve with conventional 3D transrectal US.


Asunto(s)
Adenocarcinoma/patología , Próstata/patología , Neoplasias de la Próstata/patología , Recto/diagnóstico por imagen , Ultrasonografía/métodos , Adenocarcinoma/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Biopsia , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Retratamiento , Estudios Retrospectivos
8.
Med Phys ; 37(4): 1660-73, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20443487

RESUMEN

PURPOSE: Automatic identification of the biopsy-core tissue location during a prostate biopsy procedure would provide verification that targets were adequately sampled and would allow for appropriate intraprocedure biopsy target modification. Localization of the biopsy core requires accurate segmentation of the biopsy needle and needle tip from transrectal ultrasound (TRUS) biopsy images. A temporal-based TRUS needle segmentation algorithm was developed specifically for the prostate biopsy procedure to automatically identify the TRUS image containing the biopsy needle from a collection of 2D TRUS images and to segment the biopsy-core location from the 2D TRUS image. METHODS: The temporal-based segmentation algorithm performs a temporal analysis on a series of biopsy TRUS images collected throughout needle insertion and withdrawal. Following the identification of points of needle insertion and retraction, the needle axis is segmented using a Hough transform-based algorithm, which is followed by a temporospectral TRUS analysis to identify the biopsy-needle tip. Validation of the temporal-based algorithm is performed on 108 TRUS biopsy sequences collected from the procedures of ten patients. The success of the temporal search to identify the proper images was manually assessed, while the accuracies of the needle-axis and needle-tip segmentations were quantitatively compared to implementations of two other needle segmentation algorithms within the literature. RESULTS: The needle segmentation algorithm demonstrated a >99% accuracy in identifying the TRUS image at the moment of needle insertion from the collection of real-time TRUS images throughout the insertion and withdrawal of the biopsy needle. The segmented biopsy-needle axes were accurate to within 2.3 +/- 2.0 degrees and 0.48 +/- 0.42 mm of the gold standard. Identification of the needle tip to within half of the biopsy-core length (<10 mm) was 95% successful with a mean error of 2.4 +/- 4.0 mm. Needle-tip detection using the temporal-based algorithm was significantly more accurate (p < 0.001) than the other two algorithms tested, while the segmentation of the needle axis was not significantly different between the three algorithms. CONCLUSIONS: The temporal-based needle segmentation algorithm accurately segments the location of the biopsy core from 2D TRUS images of clinical prostate biopsy procedures. The results for needle-tip localization demonstrated that the temporal-based algorithm is significantly more accurate than implementations of some existing needle segmentation algorithms within the literature.


Asunto(s)
Biopsia con Aguja/métodos , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Algoritmos , Inteligencia Artificial , Automatización , Computadores , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Modelos Estadísticos , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Factores de Tiempo , Ultrasonografía
9.
J Clin Ultrasound ; 38(5): 274-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20091691

RESUMEN

Gastrointestinal stromal tumors (GIST) have been suggested to be the most common neurofibromatosis 1-associated gastrointestinal tumors. This case report describes and compares US and CT findings of both abdominal neurofibromas and a gastrointestinal stromal tumor. On US, the GIST appeared as a well-defined inhomogeneous lesion with a target-like pattern similar to CT. The neurofibromas appeared as well-demarcated round nodules with a relatively homogeneous hypoechoic internal structure and were accompanied by subtle posterior acoustic enhancement. US and CT were able to differentiate between neurofibromatomas and GIST in this neurofibromatosis 1 patient; however, a biopsy of the suspicious mass was performed to clarify the diagnosis.


Asunto(s)
Tumores del Estroma Gastrointestinal/diagnóstico por imagen , Neoplasias Intestinales/diagnóstico por imagen , Neurofibromatosis 1/diagnóstico por imagen , Anciano de 80 o más Años , Biopsia , Medios de Contraste , Diagnóstico Diferencial , Estudios de Seguimiento , Tumores del Estroma Gastrointestinal/patología , Humanos , Neoplasias Intestinales/patología , Intestino Delgado/diagnóstico por imagen , Intestino Delgado/patología , Masculino , Intensificación de Imagen Radiográfica/métodos , Tomografía Computarizada por Rayos X/métodos , Ultrasonografía Doppler en Color/métodos
10.
Med Phys ; 47(6): 2413-2426, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32166768

RESUMEN

PURPOSE: Needle-based procedures for diagnosing and treating prostate cancer, such as biopsy and brachytherapy, have incorporated three-dimensional (3D) transrectal ultrasound (TRUS) imaging to improve needle guidance. Using these images effectively typically requires the physician to manually segment the prostate to define the margins used for accurate registration, targeting, and other guidance techniques. However, manual prostate segmentation is a time-consuming and difficult intraoperative process, often occurring while the patient is under sedation (biopsy) or anesthetic (brachytherapy). Minimizing procedure time with a 3D TRUS prostate segmentation method could provide physicians with a quick and accurate prostate segmentation, and allow for an efficient workflow with improved patient throughput to enable faster patient access to care. The purpose of this study was to develop a supervised deep learning-based method to segment the prostate in 3D TRUS images from different facilities, generated using multiple acquisition methods and commercial ultrasound machine models to create a generalizable algorithm for needle-based prostate cancer procedures. METHODS: Our proposed method for 3D segmentation involved prediction on two-dimensional (2D) slices sampled radially around the approximate central axis of the prostate, followed by reconstruction into a 3D surface. A 2D U-Net was modified, trained, and validated using images from 84 end-fire and 122 side-fire 3D TRUS images acquired during clinical biopsies and brachytherapy procedures. Modifications to the expansion section of the standard U-Net included the addition of 50% dropouts and the use of transpose convolutions instead of standard upsampling followed by convolution to reduce overfitting and improve performance, respectively. Manual contours provided the annotations needed for the training, validation, and testing datasets, with the testing dataset consisting of 20 end-fire and 20 side-fire unseen 3D TRUS images. Since predicting with 2D images has the potential to lose spatial and structural information, comparisons to 3D reconstruction and optimized 3D networks including 3D V-Net, Dense V-Net, and High-resolution 3D-Net were performed following an investigation into different loss functions. An extended selection of absolute and signed error metrics were computed, including pixel map comparisons [dice similarity coefficient (DSC), recall, and precision], volume percent differences (VPD), mean surface distance (MSD), and Hausdorff distance (HD), to assess 3D segmentation accuracy. RESULTS: Overall, our proposed reconstructed modified U-Net performed with a median [first quartile, third quartile] absolute DSC, recall, precision, VPD, MSD, and HD of 94.1 [92.6, 94.9]%, 96.0 [93.1, 98.5]%, 93.2 [88.8, 95.4]%, 5.78 [2.49, 11.50]%, 0.89 [0.73, 1.09] mm, and 2.89 [2.37, 4.35] mm, respectively. When compared to the best-performing optimized 3D network (i.e., 3D V-Net with a Dice plus cross-entropy loss function), our proposed method performed with a significant improvement across nearly all metrics. A computation time <0.7 s per prostate was observed, which is a sufficiently short segmentation time for intraoperative implementation. CONCLUSIONS: Our proposed algorithm was able to provide a fast and accurate 3D segmentation across variable 3D TRUS prostate images, enabling a generalizable intraoperative solution for needle-based prostate cancer procedures. This method has the potential to decrease procedure times, supporting the increasing interest in needle-based 3D TRUS approaches.


Asunto(s)
Braquiterapia , Aprendizaje Profundo , Neoplasias de la Próstata , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Masculino , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Ultrasonografía
11.
Magn Reson Med ; 61(2): 273-81, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19165876

RESUMEN

Proton magnetic resonance spectroscopic imaging (MRSI) of the prostate has been described at 1.5 T and 3 T as a means of localizing prostate cancers with high sensitivity and specificity. This technique could be improved by increasing the field strength further; however, it has not been described in detail above 3 T. To address the increase in B1 and SAR at high field strengths, a new protocol is described for reduced power STEAM MRSI of the prostate at 4.0 Tesla, using a pelvic surface coil array for RF transmission and reception, and a solid, reusable endorectal coil for reception only. The optimal STEAM sequence timing parameters for observation of the strongly coupled citrate spin system were determined through simulation to be echo time (TE) = 27 ms and mixing time (TM) = 27 ms, and the results were verified in vitro. Power reduction was achieved by applying the VERSE method to each of the three slice selective pulses in the STEAM sequence, and the B(1)max and SAR were reduced by 43% and 36%, respectively. Finally, in vivo spectroscopic imaging data were acquired from a prostate cancer patient, demonstrating the detection of citrate, choline, and creatine with 0.37 cc nominal resolution in a 10 minute scan.


Asunto(s)
Biomarcadores de Tumor/análisis , Colina/análisis , Ácido Cítrico/análisis , Creatina/análisis , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Adulto , Campos Electromagnéticos , Humanos , Masculino
12.
Med Phys ; 35(12): 5397-410, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19175099

RESUMEN

There are currently limitations associated with the prostate biopsy procedure, which is the most commonly used method for a definitive diagnosis of prostate cancer. With the use of two-dimensional (2D) transrectal ultrasound (TRUS) for needle-guidance in this procedure, the physician has restricted anatomical reference points for guiding the needle to target sites. Further, any motion of the physician's hand during the procedure may cause the prostate to move or deform to a prohibitive extent. These variations make it difficult to establish a consistent reference frame for guiding a needle. We have developed a 3D navigation system for prostate biopsy, which addresses these shortcomings. This system is composed of a 3D US imaging subsystem and a passive mechanical arm to minimize prostate motion. To validate our prototype, a series of experiments were performed on prostate phantoms. The 3D scan of the string phantom produced minimal geometric distortions, and the geometric error of the 3D imaging subsystem was 0.37 mm. The accuracy of 3D prostate segmentation was determined by comparing the known volume in a certified phantom to a reconstructed volume generated by our system and was shown to estimate the volume with less then 5% error. Biopsy needle guidance accuracy tests in agar prostate phantoms showed that the mean error was 2.1 mm and the 3D location of the biopsy core was recorded with a mean error of 1.8 mm. In this paper, we describe the mechanical design and validation of the prototype system using an in vitro prostate phantom. Preliminary results from an ongoing clinical trial show that prostate motion is small with an in-plane displacement of less than 1 mm during the biopsy procedure.


Asunto(s)
Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico , Agar/química , Fenómenos Biomecánicos , Biopsia con Aguja/métodos , Diseño de Equipo , Humanos , Imagenología Tridimensional/métodos , Técnicas In Vitro , Masculino , Agujas , Fantasmas de Imagen , Próstata/patología , Reproducibilidad de los Resultados , Estrés Mecánico , Ultrasonografía/métodos , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/patología
13.
IEEE Trans Med Imaging ; 36(10): 2010-2020, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28499993

RESUMEN

In magnetic resonance (MR)-targeted, 3-D transrectal ultrasound (TRUS)-guided biopsy, prostate motion during the procedure increases the needle targeting error and limits the ability to accurately sample MR-suspicious tumor volumes. The robustness of the 2-D-3-D registration methods for prostate motion compensation is impacted by local optima in the search space. In this paper, we analyzed the prostate motion characteristics and investigated methods to incorporate such knowledge into the registration optimization framework to improve robustness against local optima. Rigid motion of the prostate was analyzed adopting a mixture-of-Gaussian (MoG) model using 3-D TRUS images acquired at bilateral sextant probe positions with a mechanically assisted biopsy system. The learned motion characteristics were incorporated into Powell's direction set method by devising multiple initial search positions and initial search directions. Experiments were performed on data sets acquired during clinical biopsy procedures, and registration error was evaluated using target registration error (TRE) and converged image similarity metric values after optimization. After incorporating the learned initialization positions and directions in Powell's method, 2-D-3-D registration to compensate for motion during prostate biopsy was performed with rms ± std TRE of 2.33 ± 1.09 mm with ~3 s mean execution time per registration. This was an improvement over 3.12 ± 1.70 mm observed in Powell's standard approach. For the data acquired under clinical protocols, the converged image similarity metric value improved in ≥8% of the registrations whereas it degraded only ≤1% of the registrations. The reported improvements in optimization indicate useful advancements in robustness to ensure smooth clinical integration of a registration solution for motion compensation that facilitates accurate sampling of the smallest clinically significant tumors.


Asunto(s)
Biopsia/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Próstata/diagnóstico por imagen , Ultrasonografía Intervencional/métodos , Ultrasonido Enfocado Transrectal de Alta Intensidad/métodos , Algoritmos , Humanos , Masculino , Próstata/cirugía
14.
J Med Imaging (Bellingham) ; 3(4): 046002, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27872873

RESUMEN

Prostate segmentation on T2w MRI is important for several diagnostic and therapeutic procedures for prostate cancer. Manual segmentation is time-consuming, labor-intensive, and subject to high interobserver variability. This study investigated the suitability of computer-assisted segmentation algorithms for clinical translation, based on measurements of interoperator variability and measurements of the editing time required to yield clinically acceptable segmentations. A multioperator pilot study was performed under three pre- and postediting conditions: manual, semiautomatic, and automatic segmentation. We recorded the required editing time for each segmentation and measured the editing magnitude based on five different spatial metrics. We recorded average editing times of 213, 328, and 393 s for manual, semiautomatic, and automatic segmentation respectively, while an average fully manual segmentation time of 564 s was recorded. The reduced measured postediting interoperator variability of semiautomatic and automatic segmentations compared to the manual approach indicates the potential of computer-assisted segmentation for generating a clinically acceptable segmentation faster with higher consistency. The lack of strong correlation between editing time and the values of typically used error metrics ([Formula: see text]) implies that the necessary postsegmentation editing time needs to be measured directly in order to evaluate an algorithm's suitability for clinical translation.

15.
Can Urol Assoc J ; 10(9-10): 342-348, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27800057

RESUMEN

INTRODUCTION: This study evaluates the clinical benefit of magnetic resonance-transrectal ultrasound (MR-TRUS) fusion biopsy over systematic biopsy between first-time and repeat prostate biopsy patients with prior atypical small acinar proliferation (ASAP). MATERIALS: 100 patients were enrolled in a single-centre prospective cohort study: 50 for first biopsy, 50 for repeat biopsy with prior ASAP. Multiparameteric magnetic resonance imaging (MP-MRI) and standard 12-core ultrasound biopsy (Std-Bx) were performed on all patients. Targeted biopsy using MRI-TRUS fusion (Fn-Bx) was performed f suspicious lesions were identified on the pre-biopsy MP-MRI. Classification of clinically significant disease was assessed independently for the Std-Bx vs. Fn-Bx cores to compare the two approaches. RESULTS: Adenocarcinoma was detected in 49/100 patients (26 first biopsy, 23 ASAP biopsy), with 25 having significant disease (17 first, 8 ASAP). Fn-Bx demonstrated significantly higher per-core cancer detection rates, cancer involvement, and Gleason scores for first-time and ASAP patients. However, Fn-Bx was significantly more likely to detect significant cancer missed on Std-Bx for ASAP patients than first-time biopsy patients. The addition of Fn-Bx to Std-Bx for ASAP patients had a 166.7% relative risk reduction for missing Gleason ≥ 3 + 4 disease (number needed to image with MP-MRI=10 patients) compared to 6.3% for first biopsy (number to image=50 patients). Negative predictive value of MP-MRI for negative biopsy was 79% for first-time and 100% for ASAP patients, with median followup of 32.1 ± 15.5 months. CONCLUSIONS: MR-TRUS Fn-Bx has a greater clinical impact for repeat biopsy patients with prior ASAP than biopsy-naïve patients by detecting more significant cancers that are missed on Std-Bx.

16.
Int J Radiat Oncol Biol Phys ; 96(1): 188-96, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27375167

RESUMEN

PURPOSE: Defining prostate cancer (PCa) lesion clinical target volumes (CTVs) for multiparametric magnetic resonance imaging (mpMRI) could support focal boosting or treatment to improve outcomes or lower morbidity, necessitating appropriate CTV margins for mpMRI-defined gross tumor volumes (GTVs). This study aimed to identify CTV margins yielding 95% coverage of PCa tumors for prospective cases with high likelihood. METHODS AND MATERIALS: Twenty-five men with biopsy-confirmed clinical stage T1 or T2 PCa underwent pre-prostatectomy mpMRI, yielding T2-weighted, dynamic contrast-enhanced, and apparent diffusion coefficient images. Digitized whole-mount histology was contoured and registered to mpMRI scans (error ≤2 mm). Four observers contoured lesion GTVs on each mpMRI scan. CTVs were defined by isotropic and anisotropic expansion from these GTVs and from multiparametric (unioned) GTVs from 2 to 3 scans. Histologic coverage (proportions of tumor area on co-registered histology inside the CTV, measured for Gleason scores [GSs] ≥6 and ≥7) and prostate sparing (proportions of prostate volume outside the CTV) were measured. Nonparametric histologic-coverage prediction intervals defined minimal margins yielding 95% coverage for prospective cases with 78% to 92% likelihood. RESULTS: On analysis of 72 true-positive tumor detections, 95% coverage margins were 9 to 11 mm (GS ≥ 6) and 8 to 10 mm (GS ≥ 7) for single-sequence GTVs and were 8 mm (GS ≥ 6) and 6 mm (GS ≥ 7) for 3-sequence GTVs, yielding CTVs that spared 47% to 81% of prostate tissue for the majority of tumors. Inclusion of T2-weighted contours increased sparing for multiparametric CTVs with 95% coverage margins for GS ≥6, and inclusion of dynamic contrast-enhanced contours increased sparing for GS ≥7. Anisotropic 95% coverage margins increased the sparing proportions to 71% to 86%. CONCLUSIONS: Multiparametric magnetic resonance imaging-defined GTVs expanded by appropriate margins may support focal boosting or treatment of PCa; however, these margins, accounting for interobserver and intertumoral variability, may preclude highly conformal CTVs. Multiparametric GTVs and anisotropic margins may reduce the required margins and improve prostate sparing.


Asunto(s)
Imagen por Resonancia Magnética/normas , Márgenes de Escisión , Guías de Práctica Clínica como Asunto , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Cirugía Asistida por Computador/normas , Anciano , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Prostatectomía/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento , Carga Tumoral
17.
Eur Urol ; 70(3): 447-55, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26777228

RESUMEN

BACKGROUND: Magnetic resonance imaging-guided transurethral ultrasound ablation (MRI-TULSA) is a novel minimally invasive technology for ablating prostate tissue, potentially offering good disease control of localized cancer and low morbidity. OBJECTIVE: To determine the clinical safety and feasibility of MRI-TULSA for whole-gland prostate ablation in a primary treatment setting of localized prostate cancer (PCa). DESIGN, SETTING, AND PARTICIPANTS: A single-arm prospective phase 1 study was performed at three tertiary referral centers in Canada, Germany, and the United States. Thirty patients (median age: 69 yr; interquartile range [IQR]: 67-71 yr) with biopsy-proven low-risk (80%) and intermediate-risk (20%) PCa were treated and followed for 12 mo. INTERVENTION: MRI-TULSA treatment was delivered with the therapeutic intent of conservative whole-gland ablation including 3-mm safety margins and 10% residual viable prostate expected around the capsule. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Primary end points were safety (adverse events) and feasibility (technical accuracy and precision of conformal thermal ablation). Exploratory outcomes included quality of life, prostate-specific antigen (PSA), and biopsy at 12 mo. RESULTS AND LIMITATIONS: Median treatment time was 36min (IQR: 26-44) and prostate volume was 44ml (IQR: 38-48). Spatial control of thermal ablation was ±1.3mm on MRI thermometry. Common Terminology Criteria for Adverse Events included hematuria (43% grade [G] 1; 6.7% G2), urinary tract infections (33% G2), acute urinary retention (10% G1; 17% G2), and epididymitis (3.3% G3). There were no rectal injuries. Median pretreatment International Prostate Symptom Score 8 (IQR: 5-13) returned to 6 (IQR: 4-10) at 3 mo (mean change: -2; 95% confidence interval [CI], -4 to 1). Median pretreatment International Index of Erectile Function 13 (IQR: 6-28) recovered to 13 (IQR: 5-25) at 12 mo (mean change: -1; 95% CI, -5 to 3). Median PSA decreased 87% at 1 mo and was stable at 0.8 ng/ml (IQR: 0.6-1.1) to 12 mo. Positive biopsies showed 61% reduction in total cancer length, clinically significant disease in 9 of 29 patients (31%; 95% CI, 15-51), and any disease in 16 of 29 patients (55%; 95% CI, 36-74). CONCLUSIONS: MRI-TULSA was feasible, safe, and technically precise for whole-gland prostate ablation in patients with localized PCa. Phase 1 data are sufficiently compelling to study MRI-TULSA further in a larger prospective trial with reduced safety margins. PATIENT SUMMARY: We used magnetic resonance imaging-guided transurethral ultrasound to heat and ablate the prostate in men with prostate cancer. We showed that the treatment can be targeted within a narrow range (1mm) and has a well-tolerated side effect profile. A larger study is under way. TRIAL REGISTRATION: NCT01686958, DRKS00005311.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Neoplasias de la Próstata/cirugía , Resección Transuretral de la Próstata/métodos , Anciano , Anciano de 80 o más Años , Biopsia , Epididimitis/etiología , Disfunción Eréctil/etiología , Estudios de Factibilidad , Hematuria/etiología , Ultrasonido Enfocado de Alta Intensidad de Ablación/efectos adversos , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tempo Operativo , Erección Peniana , Estudios Prospectivos , Próstata/patología , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/patología , Calidad de Vida , Recuperación de la Función , Cirugía Asistida por Computador , Evaluación de Síntomas , Resección Transuretral de la Próstata/efectos adversos , Retención Urinaria/etiología , Infecciones Urinarias/etiología
18.
J Med Imaging (Bellingham) ; 2(2): 025002, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26158111

RESUMEN

Registration of three-dimensional (3-D) magnetic resonance (MR) to 3-D transrectal ultrasound (TRUS) prostate images is an important step in the planning and guidance of 3-D TRUS guided prostate biopsy. In order to accurately and efficiently perform the registration, a nonrigid landmark-based registration method is required to account for the different deformations of the prostate when using these two modalities. We describe a nonrigid landmark-based method for registration of 3-D TRUS to MR prostate images. The landmark-based registration method first makes use of an initial rigid registration of 3-D MR to 3-D TRUS images using six manually placed approximately corresponding landmarks in each image. Following manual initialization, the two prostate surfaces are segmented from 3-D MR and TRUS images and then nonrigidly registered using the following steps: (1) rotationally reslicing corresponding segmented prostate surfaces from both 3-D MR and TRUS images around a specified axis, (2) an approach to find point correspondences on the surfaces of the segmented surfaces, and (3) deformation of the surface of the prostate in the MR image to match the surface of the prostate in the 3-D TRUS image and the interior using a thin-plate spline algorithm. The registration accuracy was evaluated using 17 patient prostate MR and 3-D TRUS images by measuring the target registration error (TRE). Experimental results showed that the proposed method yielded an overall mean TRE of [Formula: see text] for the rigid registration and [Formula: see text] for the nonrigid registration, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm. A landmark-based nonrigid 3-D MR-TRUS registration approach is proposed, which takes into account the correspondences on the prostate surface, inside the prostate, as well as the centroid of the prostate. Experimental results indicate that the proposed method yields clinically sufficient accuracy.

19.
IEEE Trans Med Imaging ; 34(5): 1085-95, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25438308

RESUMEN

In this study, we proposed an efficient nonrigid magnetic resonance (MR) to transrectal ultrasound (TRUS) deformable registration method in order to improve the accuracy of targeting suspicious regions during a three dimensional (3-D) TRUS guided prostate biopsy. The proposed deformable registration approach employs the multi-channel modality independent neighborhood descriptor (MIND) as the local similarity feature across the two modalities of MR and TRUS, and a novel and efficient duality-based convex optimization-based algorithmic scheme was introduced to extract the deformations and align the two MIND descriptors. The registration accuracy was evaluated using 20 patient images by calculating the TRE using manually identified corresponding intrinsic fiducials in the whole gland and peripheral zone. Additional performance metrics [Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD)] were also calculated by comparing the MR and TRUS manually segmented prostate surfaces in the registered images. Experimental results showed that the proposed method yielded an overall median TRE of 1.76 mm. The results obtained in terms of DSC showed an average of 80.8±7.8% for the apex of the prostate, 92.0±3.4% for the mid-gland, 81.7±6.4% for the base and 85.7±4.7% for the whole gland. The surface distance calculations showed an overall average of 1.84±0.52 mm for MAD and 6.90±2.07 mm for MAXD.


Asunto(s)
Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Próstata/patología , Ultrasonografía/métodos , Biopsia/métodos , Humanos , Masculino
20.
IEEE Trans Med Imaging ; 34(11): 2248-57, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25935029

RESUMEN

UNLABELLED: This paper presents the results of a computer-aided intervention solution to demonstrate the application of RF time series for characterization of prostate cancer, in vivo. METHODS: We pre-process RF time series features extracted from 14 patients using hierarchical clustering to remove possible outliers. Then, we demonstrate that the mean central frequency and wavelet features extracted from a group of patients can be used to build a nonlinear classifier which can be applied successfully to differentiate between cancerous and normal tissue regions of an unseen patient. RESULTS: In a cross-validation strategy, we show an average area under receiver operating characteristic curve (AUC) of 0.93 and classification accuracy of 80%. To validate our results, we present a detailed ultrasound to histology registration framework. CONCLUSION: Ultrasound RF time series results in differentiation of cancerous and normal tissue with high AUC.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Área Bajo la Curva , Estudios de Factibilidad , Humanos , Masculino , Reproducibilidad de los Resultados , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA