Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Exp Med Biol ; 975 Pt 1: 475-495, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849476

RESUMEN

The cysteine dioxygenase (Cdo1)-null mouse is unable to synthesize hypotaurine and taurine by the cysteine/cysteine sulfinate pathway and has very low taurine levels in all tissues. The lack of taurine is associated with a lack of taurine conjugation of bile acids, a dramatic increase in the total and unconjugated hepatic bile acid pools, and an increase in betaine and other molecules that serve as organic osmolytes. We used the Cdo1-mouse model to determine the effects of taurine deficiency on expression of proteins involved in sulfur amino acid and bile acid metabolism. We identified cysteine sulfinic acid decarboxylase (Csad), betaine:homocysteine methytransferase (Bhmt), cholesterol 7α-hydroxylase (Cyp7a1), and cytochrome P450 3A11 (Cyp3a11) as genes whose hepatic expression is strongly regulated in response to taurine depletion in the Cdo1-null mouse. Dietary taurine supplementation of Cdo1-null mice restored hepatic levels of these four proteins and their respective mRNAs to wild-type levels, whereas dietary taurine supplementation had no effect on abundance of these proteins or mRNAs in wild-type mice.


Asunto(s)
Cisteína-Dioxigenasa/deficiencia , Expresión Génica/fisiología , Hígado/metabolismo , Taurina/metabolismo , Animales , Femenino , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Taurina/farmacología
2.
Amino Acids ; 48(3): 665-676, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26481005

RESUMEN

The cysteine dioxygenase (Cdo1)-null and the cysteine sulfinic acid decarboxylase (Csad)-null mouse are not able to synthesize hypotaurine/taurine by the cysteine/cysteine sulfinate pathway and have very low tissue taurine levels. These mice provide excellent models for studying the effects of taurine on biological processes. Using these mouse models, we identified betaine:homocysteine methyltransferase (BHMT) as a protein whose in vivo expression is robustly regulated by taurine. BHMT levels are low in liver of both Cdo1-null and Csad-null mice, but are restored to wild-type levels by dietary taurine supplementation. A lack of BHMT activity was indicated by an increase in the hepatic betaine level. In contrast to observations in liver of Cdo1-null and Csad-null mice, BHMT was not affected by taurine supplementation of primary hepatocytes from these mice. Likewise, CSAD abundance was not affected by taurine supplementation of primary hepatocytes, although it was robustly upregulated in liver of Cdo1-null and Csad-null mice and lowered to wild-type levels by dietary taurine supplementation. The mechanism by which taurine status affects hepatic CSAD and BHMT expression appears to be complex and to require factors outside of hepatocytes. Within the liver, mRNA abundance for both CSAD and BHMT was upregulated in parallel with protein levels, indicating regulation of BHMT and CSAD mRNA synthesis or degradation.


Asunto(s)
Betaína/metabolismo , Regulación Enzimológica de la Expresión Génica , Homocisteína S-Metiltransferasa/genética , Hígado/metabolismo , Taurina/deficiencia , Animales , Cisteína-Dioxigenasa/genética , Suplementos Dietéticos/análisis , Regulación hacia Abajo , Femenino , Hepatocitos/metabolismo , Homocisteína S-Metiltransferasa/metabolismo , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Amino Acids ; 47(6): 1215-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25772816

RESUMEN

Our investigation showed that hepatocytes isolated from cysteine dioxygenase knockout mice (Cdo1(-/-)) had lower levels of hypotaurine and taurine than Cdo1 (+/+) hepatocytes. Interestingly, hypotaurine accumulates in cultured wild-type hepatocytes. DL-propargylglycine (PPG, inhibitor of cystathionine γ-lyase and H2S production) dramatically decreased both taurine and hypotaurine levels in wild-type hepatocytes compared to untreated cells. Addition of 2 mM PPG resulted in the decrease of the intracellular taurine levels: from 10.25 ± 5.00 observed in control, to 2.53 ± 0.68 nmol/mg protein (24 h of culture) and from 17.06 ± 9.40 to 2.43 ± 0.26 nmol/mg protein (control vs. PPG; 48 h). Addition of PPG reduced also intracellular hypotaurine levels: from 7.46 ± 3.55 to 0.31 ± 0.12 nmol/mg protein (control vs. PPG; 24 h) and from 4.54 ± 3.20 to 0.42 ± 0.11 nmol/mg protein (control vs. PPG; 48 h). The similar effects of PPG on hypotaurine and taurine levels were observed in culture medium. PPG blocked hypotaurine/taurine synthesis in wild-type hepatocytes, suggesting that it strongly inhibits cysteinesulfinate decarboxylase (pyridoxal 5'-phosphate-dependent enzyme) as well as cystathionine γ-lyase. In the presence of PPG, intracellular and medium cystathionine levels for both wild-type and Cdo1 (-/-) cells were increased. Addition of homocysteine or methionine resulted in higher intracellular concentrations of homocysteine, which is a cosubstrate for cystathionine ß-synthase (CBS). It seems that PPG increases CBS-mediated desulfhydration by enhancing homocysteine levels in hepatocytes. There were no overall effects of PPG or genotype on intracellular or medium glutathione levels.


Asunto(s)
Alquinos/farmacología , Cistationina/metabolismo , Glicina/análogos & derivados , Hepatocitos/metabolismo , Homocisteína/metabolismo , Taurina/análogos & derivados , Animales , Células Cultivadas , Cistationina/genética , Cisteína-Dioxigenasa/genética , Cisteína-Dioxigenasa/metabolismo , Femenino , Glicina/farmacología , Hepatocitos/citología , Homocisteína/genética , Masculino , Ratones , Ratones Noqueados , Cultivo Primario de Células , Taurina/biosíntesis , Taurina/genética
4.
Amino Acids ; 46(5): 1353-65, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24609271

RESUMEN

The oxidation of cysteine in mammalian cells occurs by two routes: a highly regulated direct oxidation pathway in which the first step is catalyzed by cysteine dioxygenase (CDO) and by desulfhydration-oxidation pathways in which the sulfur is released in a reduced oxidation state. To assess the effect of a lack of CDO on production of hydrogen sulfide (H2S) and thiosulfate (an intermediate in the oxidation of H2S to sulfate) and to explore the roles of both cystathionine γ-lyase (CTH) and cystathionine ß-synthase (CBS) in cysteine desulfhydration by liver, we investigated the metabolism of cysteine in hepatocytes isolated from Cdo1-null and wild-type mice. Hepatocytes from Cdo1-null mice produced more H2S and thiosulfate than did hepatocytes from wild-type mice. The greater flux of cysteine through the cysteine desulfhydration reactions catalyzed by CTH and CBS in hepatocytes from Cdo1-null mice appeared to be the consequence of their higher cysteine levels, which were due to the lack of CDO and hence lack of catabolism of cysteine by the cysteinesulfinate-dependent pathways. Both CBS and CTH appeared to contribute substantially to cysteine desulfhydration, with estimates of 56 % by CBS and 44 % by CTH in hepatocytes from wild-type mice, and 63 % by CBS and 37 % by CTH in hepatocytes from Cdo1-null mice.


Asunto(s)
Cisteína-Dioxigenasa/genética , Cisteína/metabolismo , Hepatocitos/metabolismo , Sulfuro de Hidrógeno/metabolismo , Tiosulfatos/metabolismo , Animales , Células Cultivadas , Cisteína/química , Cisteína-Dioxigenasa/deficiencia , Femenino , Hepatocitos/enzimología , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Amino Acids ; 46(5): 1285-96, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24557597

RESUMEN

Using HepG2/C3A cells and MEFs, we investigated whether induction of GSH synthesis in response to sulfur amino acid deficiency is mediated by the decrease in cysteine levels or whether it requires a decrease in GSH levels per se. Both the glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunit mRNA levels were upregulated in response to a lack of cysteine or other essential amino acids, independent of GSH levels. This upregulation did not occur in MEFs lacking GCN2 (general control non-derepressible 2, also known as eIF2α kinase 4) or in cells expressing mutant eIF2α lacking the eIF2α kinase Ser(51) phosphorylation site, indicating that expression of both GCLC and GCLM was mediated by the GCN2/ATF4 stress response pathway. Only the increase in GCLM mRNA level, however, was accompanied by a parallel increase in protein expression, suggesting that the enhanced capacity for GSH synthesis depended largely on increased association of GCLC with its regulatory subunit. Upregulation of both GCLC and GLCM mRNA levels in response to cysteine deprivation was dependent on new protein synthesis, which is consistent with expression of GCLC and GCLM being mediated by proteins whose synthesis depends on activation of the GCN2/ATF4 pathway. Our data suggest that the regulation of GCLC expression may be mediated by changes in the abundance of transcriptional regulators, whereas the regulation of GCLM expression may be mediated by changes in the abundance of mRNA stabilizing or destabilizing proteins. Upregulation of GCLM levels in response to low cysteine levels may serve to protect the cell in the face of a future stress requiring GSH as an antioxidant or conjugating/detoxifying agent.


Asunto(s)
Cisteína/deficiencia , Regulación Enzimológica de la Expresión Génica , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/biosíntesis , Animales , Glutamato-Cisteína Ligasa/genética , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
6.
Am J Physiol Endocrinol Metab ; 302(10): E1292-9, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22414809

RESUMEN

Because hepatic cysteine dioxygenase (CDO) appears to play the major role in controlling cysteine catabolism in the intact rat, we characterized the effect of a lack of hepatic CDO on the regulation of cysteine and its metabolites at the whole body level. In mice with liver-specific deletion of CDO expression, hepatic and plasma cysteine levels increased. In addition, in mice with liver-specific deletion of CDO expression, the abundance of CDO and the proportion of CDO existing as the mature, more active isoform increased in extrahepatic tissues that express CDO (kidney, brown fat, and gonadal fat). CDO abundance was also increased in the pancreas, where most of the enzyme in both control and liver CDO-knockout mice was in the more active isoform. This upregulation of CDO concentration and active-site cofactor formation were not associated with an increase in CDO mRNA and thus presumably were due to a decrease in CDO degradation and an increase in CDO cofactor formation in association with increased exposure of extrahepatic tissues to cysteine in mice lacking hepatic CDO. Extrahepatic tissues of liver CDO-knockout mice also had higher levels of hypotaurine, consistent with increased metabolism of cysteine by the CDO/cysteinesulfinate decarboxylase pathway. The hepatic CDO-knockout mice were able to maintain normal levels of glutathione, taurine, and sulfate. The maintenance of taurine concentrations in liver as well as in extrahepatic tissues is particularly notable, since mice were fed a taurine-free diet and liver is normally considered the major site of taurine biosynthesis. This redundant capacity for regulation of cysteine concentrations and production of hypotaurine/taurine is additional support for the body's robust mechanisms for control of body cysteine levels and indicates that extrahepatic tissues are able to compensate for a lack of hepatic capacity for cysteine catabolism.


Asunto(s)
Cisteína-Dioxigenasa/genética , Cisteína-Dioxigenasa/metabolismo , Cistina/metabolismo , Taurina/biosíntesis , Grasa Abdominal/enzimología , Tejido Adiposo Pardo/enzimología , Aminoácidos Sulfúricos/sangre , Animales , Glutatión/metabolismo , Homocisteína/metabolismo , Riñón/enzimología , Hígado/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/enzimología , Sulfatos/sangre , Taurina/análogos & derivados , Taurina/sangre
7.
Am J Physiol Endocrinol Metab ; 301(4): E668-84, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21693692

RESUMEN

Cysteine homeostasis is dependent on the regulation of cysteine dioxygenase (CDO) in response to changes in sulfur amino acid intake. CDO oxidizes cysteine to cysteinesulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. To gain insight into the physiological function of CDO and the consequence of a loss of CDO activity, mice carrying a null CDO allele (CDO(+/-) mice) were crossed to generate CDO(-/-), CDO(+/-), and CDO(+/+) mice. CDO(-/-) mice exhibited postnatal mortality, growth deficit, and connective tissue pathology. CDO(-/-) mice had extremely low taurine levels and somewhat elevated cysteine levels, consistent with the lack of flux through CDO-dependent catabolic pathways. However, plasma sulfate levels were slightly higher in CDO(-/-) mice than in CDO(+/-) or CDO(+/+) mice, and tissue levels of acid-labile sulfide were elevated, indicating an increase in cysteine catabolism by cysteine desulfhydration pathways. Null mice had lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Supplementation of mice with taurine improved survival of male pups but otherwise had little effect on the phenotype of the CDO(-/-) mice. H(2)S has been identified as an important gaseous signaling molecule as well as a toxicant, and pathology may be due to dysregulation of H(2)S production. Control of cysteine levels by regulation of CDO may be necessary to maintain low H(2)S/sulfane sulfur levels and facilitate the use of H(2)S as a signaling molecule.


Asunto(s)
Cisteína-Dioxigenasa/fisiología , Cisteína/metabolismo , Sulfuro de Hidrógeno/metabolismo , Taurina/biosíntesis , Animales , Cisteína-Dioxigenasa/genética , Transporte de Electrón/fisiología , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados
9.
FEBS J ; 285(10): 1827-1839, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29604178

RESUMEN

Sperm entering the epididymis are immotile and cannot respond to stimuli that will enable them to fertilize. The epididymis is a highly complex organ, with multiple histological zones and cell types that together change the composition and functional abilities of sperm through poorly understood mechanisms. Sperm take up taurine during epididymal transit, which may play antioxidant or osmoregulatory roles. Cysteine dioxygenase (CDO) is a critical enzyme for taurine synthesis. A previous study reported that male CDO-/- mice exhibit idiopathic infertility, prompting us to investigate the functions of CDO in male fertility. Immunoblotting and quantitative reverse transcription-polymerase chain reaction analysis of epididymal segments showed that androgen-dependent CDO expression was highest in the caput epididymidis. CDO-/- mouse sperm demonstrated a severe lack of in vitro fertilization ability. Acrosome exocytosis and tyrosine phosphorylation profiles in response to stimuli were normal, suggesting normal functioning of pathways associated with capacitation. CDO-/- sperm had a slight increase in head abnormalities. Taurine and hypotaurine concentrations in CDO-/- sperm decreased in the epididymal intraluminal fluid and sperm cytosol. We found no evidence of antioxidant protection against lipid peroxidation. However, CDO-/- sperm exhibited severe defects in volume regulation, swelling in response to the relatively hypo-osmotic conditions found in the female reproductive tract. Our findings suggest that epididymal CDO plays a key role in post-testicular sperm maturation, enabling sperm to osmoregulate as they transition from the male to the female reproductive tract, and provide new understanding of the compartmentalized functions of the epididymis.


Asunto(s)
Cisteína-Dioxigenasa/metabolismo , Fertilidad , Osmorregulación , Espermatozoides/metabolismo , Reacción Acrosómica , Animales , Antioxidantes/metabolismo , Western Blotting , Cromatografía Líquida de Alta Presión , Cisteína-Dioxigenasa/genética , Epidídimo/enzimología , Exocitosis , Femenino , Peroxidación de Lípido , Masculino , Ratones , Ratones Noqueados , Fosforilación , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Maduración del Esperma , Espermatozoides/fisiología , Taurina/análogos & derivados , Taurina/metabolismo
10.
Ann N Y Acad Sci ; 1363: 99-115, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26995761

RESUMEN

To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial ß-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved.


Asunto(s)
Cisteína/metabolismo , Metabolismo Energético , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Animales , Biomarcadores , Composición Corporal , Peso Corporal , Cisteína-Dioxigenasa , Citocinas/sangre , Dieta , Femenino , Genotipo , Hormonas/sangre , Hígado/metabolismo , Masculino , Metaboloma , Metabolómica/métodos , Metionina/metabolismo , Ratones , Ratones Noqueados , Estearoil-CoA Desaturasa , Taurina/metabolismo
11.
Antioxid Redox Signal ; 19(12): 1321-36, 2013 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-23350603

RESUMEN

AIMS: To define the consequences of loss of cysteine dioxygenase (CDO) on cysteine metabolism at the tissue level, we determined levels of relevant metabolites and enzymes and evidence of H2S/HS(-) (gaseous hydrogen sulfide and its conjugate base) toxicity in liver, pancreas, kidney, and lung of CDO(-/-) mice that were fed either a taurine-free or taurine-supplemented diet. RESULTS: CDO(-/-) mice had low tissue and serum taurine and hypotaurine levels and high tissue levels of cysteine, consistent with the loss of CDO. CDO(-/-) mice had elevated urinary excretion of thiosulfate, high tissue and serum cystathionine and lanthionine levels, and evidence of inhibition and destabilization of cytochrome c oxidase, which is consistent with excess production of H2S/HS(-). Accumulation of cystathionine and lanthionine appeared to result from cystathionine ß-synthase (CBS)-mediated cysteine desulfhydration. Very high levels of hypotaurine in pancreas of wild-type mice and very high levels of cystathionine and lanthionine in pancreas of CDO(-/-) mice were observed, suggesting a unique cysteine metabolism in the pancreas. INNOVATION: The CDO(-/-) mouse model provides new insights into tissue-specific cysteine metabolism, particularly the role of pancreas in metabolism of excess cysteine by CBS-catalyzed reactions, and will be a useful model for studying the effects of excess endogenous production of H2S/HS(-). CONCLUSION: The CDO(-/-) mouse clearly demonstrates that H2S/HS(-) production in tissues can exceed the capacity of the animal to oxidize sulfide to sulfate and demonstrates that pancreas and lung are more susceptible to toxicity from endogenous H2S/HS(-)production than are liver and kidney.


Asunto(s)
Cisteína-Dioxigenasa/genética , Cisteína/metabolismo , Sulfuro de Hidrógeno/metabolismo , Pulmón/metabolismo , Páncreas/metabolismo , Alanina/análogos & derivados , Alanina/metabolismo , Animales , Cistationina/metabolismo , Cisteína-Dioxigenasa/deficiencia , Dieta , Complejo IV de Transporte de Electrones/metabolismo , Estabilidad de Enzimas , Femenino , Glutatión/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Especificidad de Órganos , Páncreas/patología , Sulfuros/metabolismo , Taurina/análogos & derivados , Taurina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA