Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cardiovasc Diabetol ; 22(1): 294, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891673

RESUMEN

BACKGROUND: The PI3K/AKT pathway transduces the majority of the metabolic actions of insulin. In addition to cytosolic targets, insulin-stimulated phospho-AKT also translocates to mitochondria in the myocardium. Mouse models of diabetes exhibit impaired mitochondrial AKT signaling but the implications of this on cardiac structure and function is unknown. We hypothesized that loss of mitochondrial AKT signaling is a critical step in cardiomyopathy and reduces cardiac oxidative phosphorylation. METHODS: To focus our investigation on the pathophysiological consequences of this mitochondrial signaling pathway, we generated transgenic mouse models of cardiac-specific, mitochondria-targeting, dominant negative AKT1 (CAMDAKT) and constitutively active AKT1 expression (CAMCAKT). Myocardial structure and function were examined using echocardiography, histology, and biochemical assays. We further investigated the underlying effects of mitochondrial AKT1 on mitochondrial structure and function, its interaction with ATP synthase, and explored in vivo metabolism beyond the heart. RESULTS: Upon induction of dominant negative mitochondrial AKT1, CAMDAKT mice developed cardiac fibrosis accompanied by left ventricular hypertrophy and dysfunction. Cardiac mitochondrial oxidative phosphorylation efficiency and ATP content were reduced, mitochondrial cristae structure was lost, and ATP synthase structure was compromised. Conversely, CAMCAKT mice were protected against development of diabetic cardiomyopathy when challenged with a high calorie diet. Activation of mitochondrial AKT1 protected cardiac function and increased fatty acid uptake in myocardium. In addition, total energy expenditure was increased in CAMCAKT mice, accompanied by reduced adiposity and reduced development of fatty liver. CONCLUSION: CAMDAKT mice modeled the effects of impaired mitochondrial signaling which occurs in the diabetic myocardium. Disruption of this pathway is a key step in the development of cardiomyopathy. Activation of mitochondrial AKT1 in CAMCAKT had a protective role against diabetic cardiomyopathy as well as improved metabolism beyond the heart.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Adenosina Trifosfato/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatías Diabéticas/diagnóstico por imagen , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Metabolismo Energético , Insulina/farmacología , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Kidney Int ; 100(2): 311-320, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33836171

RESUMEN

Hypertension is a major cause of cardiovascular morbidity and mortality, despite the availability of antihypertensive drugs with different targets and mechanisms of action. Here, we provide evidence that pharmacological inhibition of TMEM16A (ANO1), a calcium-activated chloride channel expressed in vascular smooth muscle cells, blocks calcium-activated chloride currents and contraction in vascular smooth muscle in vitro and decreases blood pressure in spontaneously hypertensive rats. The acylaminocycloalkylthiophene TMinh-23 fully inhibited calcium-activated TMEM16A chloride current with nanomolar potency in Fischer rat thyroid cells expressing TMEM16A, and in primary cultures of rat vascular smooth muscle cells. TMinh-23 reduced vasoconstriction caused by the thromboxane mimetic U46619 in mesenteric resistance arteries of wild-type and spontaneously hypertensive rats, with a greater inhibition in spontaneously hypertensive rats. Blood pressure measurements by tail-cuff and telemetry showed up to a 45-mmHg reduction in systolic blood pressure lasting for four-six hours in spontaneously hypertensive rats after a single dose of TMinh-23. A minimal effect on blood pressure was seen in wild-type rats or mice treated with TMinh-23. Five-day twice daily treatment of spontaneously hypertensive rats with TMinh-23 produced sustained reductions of 20-25 mmHg in daily mean systolic and diastolic blood pressure. TMinh-23 action was reversible, with blood pressure returning to baseline in spontaneously hypertensive rats by three days after treatment discontinuation. Thus, our studies provide validation for TMEM16A as a target for antihypertensive therapy and demonstrate the efficacy of TMinh-23 as an antihypertensive with a novel mechanism of action.


Asunto(s)
Anoctamina-1/antagonistas & inhibidores , Hipertensión , Músculo Liso Vascular , Vasoconstricción , Animales , Presión Sanguínea/efectos de los fármacos , Canales de Cloruro , Hipertensión/tratamiento farmacológico , Contracción Muscular/efectos de los fármacos , Ratas , Ratas Endogámicas SHR
3.
Am J Physiol Heart Circ Physiol ; 317(2): H445-H459, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31172811

RESUMEN

Electronic cigarettes (e-cigarettes), also known as electronic nicotine delivery systems, are a popular alternative to conventional nicotine cigarettes, both among smokers and those who have never smoked. In spite of the widespread use of e-cigarettes and the proposed detrimental cardiac and atherosclerotic effects of nicotine, the effects of e-cigarettes on these systems are not known. In this study, we investigated the cardiovascular and cardiac effects of e-cigarettes with and without nicotine in apolipoprotein-E knockout (ApoE-/-) mice. We developed an e-cigarette exposure model that delivers nicotine in a manner similar to that of human e-cigarettes users. Using commercially available e-cigarettes, bluCig PLUS, ApoE-/- mice were exposed to saline, e-cigarette without nicotine [e-cigarette (0%)], and e-cigarette with 2.4% nicotine [e-cigarette (2.4%)] aerosol for 12 wk. Echocardiographic data show that mice treated with e-cigarette (2.4%) had decreased left ventricular fractional shortening and ejection fraction compared with e-cigarette (0%) and saline. Ventricular transcriptomic analysis revealed changes in genes associated with metabolism, circadian rhythm, and inflammation in e-cigarette (2.4%)-treated ApoE-/- mice. Transmission electron microscopy revealed that cardiomyocytes of mice treated with e-cigarette (2.4%) exhibited ultrastructural abnormalities indicative of cardiomyopathy. Additionally, we observed increased oxidative stress and mitochondrial DNA mutations in mice treated with e-cigarette (2.4%). ApoE-/- mice on e-cigarette (2.4%) had also increased atherosclerotic lesions compared with saline aerosol-treated mice. These results demonstrate adverse effects of e-cigarettes on cardiac function in mice.NEW & NOTEWORTHY The present study is the first to show that mice exposed to nicotine electronic cigarettes (e-cigarettes) have decreased cardiac fractional shortening and ejection fraction in comparison with controls. RNA-seq analysis reveals a proinflammatory phenotype induced by e-cigarettes with nicotine. We also found increased atherosclerosis in the aortic root of mice treated with e-cigarettes with nicotine. Our results show that e-cigarettes with nicotine lead to detrimental effects on the heart that should serve as a warning to e-cigarette users and agencies that regulate them.


Asunto(s)
Aterosclerosis/etiología , Sistemas Electrónicos de Liberación de Nicotina , Nicotina/toxicidad , Agonistas Nicotínicos/toxicidad , Volumen Sistólico , Vapeo/efectos adversos , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Modelos Animales de Enfermedad , Exposición por Inhalación/efectos adversos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Mutación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Estrés Oxidativo , Placa Aterosclerótica , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
4.
Circ Res ; 114(7): 1103-13, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24563458

RESUMEN

RATIONALE: Tight control of cardiomyocyte proliferation is essential for the formation of four-chambered heart. Although human mutation of NKX2-5 is linked to septal defects and atrioventricular conduction abnormalities, early lethality and hemodynamic alteration in the mutant models have caused controversy as to whether Nkx2-5 regulates cardiomyocyte proliferation. OBJECTIVE: In this study, we circumvented these limitations by atrial-restricted deletion of Nkx2-5. METHOD AND RESULTS: Atrial-specific Nkx2-5 mutants died shortly after birth with hyperplastic working myocytes and conduction system including two nodes and internodal tracts. Multicolor reporter analysis revealed that Nkx2-5-null cardiomyocytes displayed clonal proliferative activity throughout the atria, indicating the suppressive role of Nkx2-5 in cardiomyocyte proliferation after chamber ballooning stages. Transcriptome analysis revealed that aberrant activation of Notch signaling underlies hyperproliferation of mutant cardiomyocytes, and forced activation of Notch signaling recapitulates hyperproliferation of working myocytes but not the conduction system. CONCLUSIONS: Collectively, these data suggest that Nkx2-5 regulates the proliferation of atrial working and conduction myocardium in coordination with Notch pathway.


Asunto(s)
Proliferación Celular , Atrios Cardíacos/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Proteínas de Homeodominio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Animales , Atrios Cardíacos/citología , Sistema de Conducción Cardíaco/citología , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/fisiología , Receptores Notch/metabolismo , Factores de Transcripción/genética , Transcriptoma
5.
J Pathol ; 237(4): 482-94, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26213100

RESUMEN

The low molecular weight protein tyrosine phosphatase (LMPTP), encoded by the ACP1 gene, is a ubiquitously expressed phosphatase whose in vivo function in the heart and in cardiac diseases remains unknown. To investigate the in vivo role of LMPTP in cardiac function, we generated mice with genetic inactivation of the Acp1 locus and studied their response to long-term pressure overload. Acp1(-/-) mice develop normally and ageing mice do not show pathology in major tissues under basal conditions. However, Acp1(-/-) mice are strikingly resistant to pressure overload hypertrophy and heart failure. Lmptp expression is high in the embryonic mouse heart, decreased in the postnatal stage, and increased in the adult mouse failing heart. We also show that LMPTP expression increases in end-stage heart failure in humans. Consistent with their protected phenotype, Acp1(-/-) mice subjected to pressure overload hypertrophy have attenuated fibrosis and decreased expression of fibrotic genes. Transcriptional profiling and analysis of molecular signalling show that the resistance of Acp1(-/-) mice to pathological cardiac stress correlates with marginal re-expression of fetal cardiac genes, increased insulin receptor beta phosphorylation, as well as PKA and ephrin receptor expression, and inactivation of the CaMKIIδ pathway. Our data show that ablation of Lmptp inhibits pathological cardiac remodelling and suggest that inhibition of LMPTP may be of therapeutic relevance for the treatment of human heart failure.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Cardiomiopatía de Takotsubo/metabolismo , Animales , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Ratas
6.
Sci Rep ; 13(1): 18239, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880325

RESUMEN

Electronic cigarettes (e-cigarettes) are a prevalent alternative to conventional nicotine cigarettes among smokers and people who have never smoked. Increased concentrations of serum free fatty acids (FFAs) are crucial in generating lipotoxicity. We studied the effects of acipimox, an antilipolytic drug, on e-cigarette-induced cardiac dysfunction. C57BL/6J wild-type mice on high fat diet were treated with saline, e-cigarette with 2.4% nicotine [e-cigarette (2.4%)], and e-cigarette (2.4%) plus acipimox for 12 weeks. Fractional shortening and ejection fraction were diminished in mice exposed to e-cigarettes (2.4%) compared with saline and acipimox-treated mice. Mice exposed to e-cigarette (2.4%) had increased circulating levels of inflammatory cytokines and FFAs, which were diminished by acipimox. Gene Set Enrichment Analysis revealed that e-cigarette (2.4%)-treated mice had gene expression changes in the G2/M DNA damage checkpoint pathway that was normalized by acipimox. Accordingly, we showed that acipimox suppressed the nuclear localization of phospho-p53 induced by e-cigarette (2.4%). Additionally, e-cigarette (2.4%) increased the apurinic/apyrimidinic sites, a marker of oxidative DNA damage which was normalized by acipimox. Mice exposed to e-cigarette (2.4%) had increased cardiac Heme oxygenase 1 protein levels and 4-hydroxynonenal (4-HNE). These markers of oxidative stress were decreased by acipimox. Therefore, inhibiting lipolysis with acipimox normalizes the physiological changes induced by e-cigarettes and the associated increase in inflammatory cytokines, oxidative stress, and DNA damage.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Humanos , Ratones , Animales , Nicotina , Lipólisis , Ratones Endogámicos C57BL , Fenotipo , Citocinas
7.
J Mol Cell Cardiol ; 53(6): 790-800, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22999861

RESUMEN

White mature adipocytes give rise to multipotent cells, so-called de-differentiated fat (DFAT) cells, when losing their fat in culture. The objective of this study was to examine the ability of DFAT cells to give rise to endothelial cells (ECs) in vitro and vivo. We demonstrate that mouse and human DFAT cells, derived from adipose tissue and lipospirate, respectively, initially lack expression of CD34, CD31, CD146, CD45 and pericyte markers, distinguishing them from progenitor cells previously identified in adipose stroma. The DFAT cells spontaneously differentiate into vascular ECs in vitro, as determined by real-time PCR, fluorescence activated cell sorting, immunostaining, and formation of tube structures. Treatment with bone morphogenetic protein (BMP)4 and BMP9, important in regulating angiogenesis, significantly enhances the EC differentiation. Furthermore, adipocyte-derived cells from Green Fluorescent Protein-transgenic mice were detected in the vasculature of infarcted myocardium up to 6 weeks after ligation of the left anterior descending artery in mice. We conclude that adipocyte-derived multipotent cells are able to spontaneously give rise to ECs, a process that is promoted by BMPs and may be important in cardiovascular regeneration and in physiological and pathological changes in fat and other tissues.


Asunto(s)
Adipocitos Blancos/citología , Desdiferenciación Celular/fisiología , Diferenciación Celular/fisiología , Células Madre Multipotentes/citología , Adipocitos Blancos/efectos de los fármacos , Animales , Proteína Morfogenética Ósea 4/farmacología , Desdiferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Expresión Génica , Factores de Diferenciación de Crecimiento/farmacología , Humanos , Masculino , Ratones , Ratones Transgénicos , Células Madre Multipotentes/efectos de los fármacos , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Trasplante de Células Madre
8.
J Physiol ; 590(23): 6213-26, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22988135

RESUMEN

The circadian system co-ordinates the temporal patterning of behaviour and many underlying biological processes. In some cases, the regulated outputs of the circadian system, such as activity, may be able to feed back to alter core clock processes. In our studies, we used four wheel-access conditions (no access; free access; early night; and late night) to manipulate the duration and timing of activity while under the influence of a light-dark cycle. In wild-type mice, scheduled wheel access was able to increase ambulatory activity, inducing a level of exercise driven at various phases of the light-dark cycle. Scheduled exercise also manipulated the magnitude and phasing of the circadian-regulated outputs of heart rate and body temperature. At a molecular level, the phasing and amplitude of PER2::LUCIFERASE (PER2::LUC) expression rhythms in the SCN and peripheral tissues of Per2::Luc knockin mice were altered by scheduled exercise. We then tested whether scheduled wheel access could improve deficits observed in vasointestinal polypeptide-deficient mice under the influence of a light-dark cycle. We found that scheduled wheel access during the late night improved many of the behavioural, physiological and molecular deficits previously described in vasointestinal polypeptide-deficient mice. Our results raise the possibility that scheduled exercise could be used as a tool to modulate daily rhythms and, when applied, may counteract some of the negative impacts of ageing and disease on the circadian system.


Asunto(s)
Ritmo Circadiano/fisiología , Condicionamiento Físico Animal/fisiología , Péptido Intestinal Vasoactivo/fisiología , Animales , Conducta Animal/fisiología , Temperatura Corporal/fisiología , Expresión Génica , Frecuencia Cardíaca/fisiología , Ratones , Ratones Transgénicos , Proteínas Circadianas Period/genética
9.
Am J Physiol Endocrinol Metab ; 302(11): E1352-62, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22338075

RESUMEN

Associations between exponential childhood growth superimposed on low birth weight and adult onset cardiovascular disease with glucose intolerance/type 2 diabetes mellitus exist in epidemiological investigations. To determine the metabolic adaptations that guard against myocardial failure on subsequent exposure to hypoxia, we compared with controls (CON), the effect of intrauterine (IUGR), postnatal (PNGR), and intrauterine and postnatal (IPGR) calorie and growth restriction (n = 6/group) on myocardial macronutrient transporter (fatty acid and glucose) -mediated uptake in pregestational young female adult rat offspring. A higher myocardial FAT/CD36 protein expression in IUGR, PNGR, and IPGR, with higher FATP1 in IUGR, FATP6 in PNGR, FABP-c in PNGR and IPGR, and no change in GLUT4 of all groups was observed. These adaptive macronutrient transporter protein changes were associated with no change in myocardial [(3)H]bromopalmitate accumulation but a diminution in 2-deoxy-[(14)C]glucose uptake. Examination of the sarcolemmal subfraction revealed higher basal concentrations of FAT/CD36 in PNGR and FATP1 and GLUT4 in IUGR, PNGR, and IPGR vs. CON. Exogenous insulin uniformly further enhanced sarcolemmal association of these macronutrient transporter proteins above that of basal, with the exception of insulin resistance of FATP1 and GLUT4 in IUGR and FAT/CD36 in PNGR. The basal sarcolemmal macronutrient transporter adaptations proved protective against subsequent chronic hypoxic exposure (7 days) only in IUGR and PNGR, with notable deterioration in IPGR and CON of the echocardiographic ejection fraction. We conclude that the IUGR and PNGR pregestational adult female offspring displayed a resistance to insulin-induced translocation of FATP1, GLUT4, or FAT/CD36 to the myocardial sarcolemma due to preexistent higher basal concentrations. This basal adaptation of myocardial macronutrient transporters ensured adequate fatty acid uptake, thereby proving protective against chronic hypoxia-induced myocardial compromise.


Asunto(s)
Proteínas Portadoras/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Trastornos del Crecimiento/metabolismo , Miocardio/metabolismo , Adaptación Fisiológica , Análisis de Varianza , Animales , Animales Recién Nacidos , Western Blotting , Peso Corporal/fisiología , Restricción Calórica/efectos adversos , Cateterismo Cardíaco , Membrana Celular/metabolismo , Desoxiglucosa/metabolismo , Ecocardiografía , Femenino , Hormonas/metabolismo , Hipoxia/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Miocardio/citología , Tamaño de los Órganos/fisiología , Palmitatos/farmacocinética , Embarazo , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley
10.
ACS Nano ; 16(3): 4756-4774, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35239330

RESUMEN

Infections caused by drug-resistant bacteria, particularly Gram-negative organisms, are increasingly difficult to treat using antibiotics. A potential alternative is "phage therapy", in which phages infect and lyse the bacterial host. However, phage therapy poses serious drawbacks and safety concerns, such as the risk of genetic transduction of antibiotic resistance genes, inconsistent pharmacokinetics, and unknown evolutionary potential. In contrast, metallic nanoparticles possess precise, tunable properties, including efficient conversion of electronic excitation into heat. In this work, we demonstrate that engineered phage-nanomaterial conjugates that target the Gram-negative pathogen Pseudomonas aeruginosa are highly effective as a treatment of infected wounds in mice. Photothermal heating, performed as a single treatment (15 min) or as two treatments on consecutive days, rapidly reduced the bacterial load and released Zn2+ to promote wound healing. The phage-nanomaterial treatment was significantly more effective than systemic standard-of-care antibiotics, with a >10× greater reduction in bacterial load and ∼3× faster healing as measured by wound size reduction when compared to fluoroquinolone treatment. Notably, the phage-nanomaterial was also effective against a P. aeruginosa strain resistant to polymyxins, a last-line antibiotic therapy. Unlike these antibiotics, the phage-nanomaterial showed no detectable toxicity or systemic effects in mice, consistent with the short duration and localized nature of phage-nanomaterial treatment. Our results demonstrate that phage therapy controlled by inorganic nanomaterials can be a safe and effective antimicrobial strategy in vivo.


Asunto(s)
Bacteriófagos , Nanotubos , Infecciones por Pseudomonas , Infección de Heridas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Oro/farmacología , Ratones , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa , Infección de Heridas/microbiología , Infección de Heridas/terapia , Zinc/farmacología , Zinc/uso terapéutico
11.
Front Cardiovasc Med ; 9: 879726, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463745

RESUMEN

Electronic cigarettes or e-cigarettes are the most frequently used tobacco product among adolescents. Despite the widespread use of e-cigarettes and the known detrimental cardiac consequences of nicotine, the effects of e-cigarettes on the cardiovascular system are not well-known. Several in vitro and in vivo studies delineating the mechanisms of the impact of e-cigarettes on the cardiovascular system have been published. These include mechanisms associated with nicotine or other components of the aerosol or thermal degradation products of e-cigarettes. The increased hyperlipidemia, sympathetic dominance, endothelial dysfunction, DNA damage, and macrophage activation are prominent effects of e-cigarettes. Additionally, oxidative stress and inflammation are unifying mechanisms at many levels of the cardiovascular impairment induced by e-cigarette exposure. This review outlines the contribution of e-cigarettes in the development of cardiovascular diseases and their molecular underpinnings.

12.
Am J Physiol Heart Circ Physiol ; 300(1): H241-50, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20952671

RESUMEN

The circadian system, driven by the suprachiasmatic nucleus (SCN), regulates properties of cardiovascular function. The dysfunction of this timing system can result in cardiac pathology. The neuropeptide vasoactive intestinal peptide (VIP) is crucial for circadian rhythms in a number of biological processes including SCN electrical activity and wheel running behavior. Anatomic evidence indicates that SCN neurons expressing VIP are well positioned to drive circadian regulation of cardiac function through interactions with the autonomic centers. In this study, we tested the hypothesis that loss of VIP would result in circadian deficits in heart rate (HR) and clock gene expression in cardiac tissue. We implanted radiotelemetry devices into VIP-deficient mice and wild-type (WT) controls and continuously recorded HR, body temperature, and cage activity in freely moving mice. Under light-dark conditions, VIP-deficient mice displayed weak rhythms in HR, body temperature, and cage activity, with onsets that were advanced in phase compared with WT mice. Similarly, clock gene expression in cardiac tissue was rhythmic but phase advanced in mutant mice. In constant darkness, the normal circadian rhythms in HR were lost in VIP-deficient mice; however, most mutant mice continued to exhibit circadian rhythms of body temperature with shortened free-running period. The loss of VIP altered, but did not abolish, autonomic regulation of HR. Analysis of the echocardiograms did not find any evidence for a loss of cardiac function in VIP-deficient mice, and the size of the hearts did not differ between genotypes. These results demonstrate that VIP is an important regulator of physiological circadian rhythmicity in the heart.


Asunto(s)
Ritmo Circadiano/fisiología , Frecuencia Cardíaca/fisiología , Actividad Motora/fisiología , Miocardio/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Factores de Transcripción ARNTL/metabolismo , Análisis de Varianza , Animales , Temperatura Corporal/fisiología , Ecocardiografía , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Proteínas Circadianas Period/metabolismo , Receptores de Péptido Intestinal Vasoactivo/genética , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Telemetría , Péptido Intestinal Vasoactivo/genética
13.
Front Cardiovasc Med ; 8: 810810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004919

RESUMEN

Individuals affected by Huntington's disease (HD) present with progressive degeneration that results in a wide range of symptoms, including cardiovascular (CV) dysfunction. The huntingtin gene (HTT) and its product are ubiquitously expressed, hence, the cardiomyopathy could also be driven by defects caused by its mutated form (mHTT) in the cardiomyocytes themselves. In the present study, we sought to determine the contribution of the mHTT expressed in the cardiomyocytes to CV symptoms. We utilized the BACHD mouse model, which exhibits many of the HD core symptoms, including CV dysfunction. This model allows the targeted genetic reduction of mHTT expression in the cardiomyocytes while maintaining the expression of the mHTT in the rest of the body. The BACHD line was crossed with a line of mice in which the expression of Cre recombinase is driven by the cardiac-specific alpha myosin-heavy chain (Myh6) promoter. The offspring of this cross (BMYO mice) exhibited a dramatic reduction in mHTT in the heart but not in the striatum. The BMYO mice were evaluated at 6 months old, as at this age, the BACHD line displays a strong CV phenotype. Echocardiogram measurements found improvement in the ejection fraction in the BMYO line compared to the BACHD, while hypertrophy was observed in both mutant lines. Next, we examined the expression of genes known to be upregulated during pathological cardiac hypertrophy. As measured by qPCR, the BMYO hearts exhibited significantly less expression of collagen1a as well as Gata4, and brain natriuretic peptide compared to the BACHD. Fibrosis in the hearts assessed by Masson's trichrome stain and the protein levels of fibronectin were reduced in the BMYO hearts compared to BACHD. Finally, we examined the performance of the mice on CV-sensitive motor tasks. Both the overall activity levels and grip strength were improved in the BMYO mice. Therefore, we conclude that the reduction of mHtt expression in the heart benefits CV function in the BACHD model, and suggest that cardiomyopathy should be considered in the treatment strategies for HD.

14.
J Card Fail ; 16(9): 786-96, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20797603

RESUMEN

BACKGROUND: The complete removal of the cardiac sodium-calcium exchanger (NCX1) is associated with embryonic lethality, whereas its overexpression is linked to heart failure. To determine whether or not a reduced expression of NCX1 is compatible with normal heart structure and function, we studied 2 knockout (KO) mouse models with reduced levels of NCX1: a heterozygous global KO (HG-KO) with a 50% level of NCX1 expression in all myocytes, and a ventricular-specific KO (V-KO) with NCX1 expression in only 10% to 20% of the myocytes. METHODS AND RESULTS: Both groups of mice were evaluated at baseline, after transaortic constriction (TAC), and after acute or chronic beta-adrenergic stimulation. At baseline, the HG-KO mice had smaller hearts and the V-KO mice had larger hearts than their wild-type (WT) controls (P < .05). The HG-KO and their control WT mice had normal responses to TAC and beta-adrenergic stimulation. However, the V-KO group was intolerant to TAC and had a significantly (P < .05) blunted response to beta-adrenergic stimulation as compared with the HG-KO mice and WT controls. Unlike the HG-KO mice, the V-KO mice did not tolerate chronic isoproterenol infusion. Telemetric analysis of the electrocardiogram, body temperature, and activity revealed a normal diurnal rhythm in all groups of mice, but confirmed shorter QT intervals along with increased arrhythmias and reduced R wave to P wave amplitude ratios in the V-KO mice. CONCLUSIONS: Though NCX1 can be reduced by half in all myocytes without significant functional alterations, it must be expressed in more than 20% of the myocytes to prevent severe remodeling and heart failure in mouse heart.


Asunto(s)
Insuficiencia Cardíaca/patología , Miocardio/citología , Intercambiador de Sodio-Calcio/biosíntesis , Agonistas Adrenérgicos beta/administración & dosificación , Agonistas Adrenérgicos beta/uso terapéutico , Análisis de Varianza , Animales , Aorta/patología , Gasto Cardíaco , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/diagnóstico por imagen , Hemodinámica , Isoproterenol/administración & dosificación , Isoproterenol/uso terapéutico , Ratones , Ratones Noqueados , Modelos Cardiovasculares , Miocardio/patología , Intercambiador de Sodio-Calcio/efectos de los fármacos , Ultrasonografía
15.
Circ Res ; 102(10): 1222-9, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18420946

RESUMEN

Normally, cell cycle progression is tightly coupled to the accumulation of cell mass; however, the mechanisms whereby proliferation and cell growth are linked are poorly understood. We have identified cyclin (Cyc)D2, a G(1) cyclin implicated in mediating S phase entry, as a potential regulator of hypertrophic growth in adult post mitotic myocardium. To examine the role of CycD2 and its downstream targets, we subjected CycD2-null mice to mechanical stress. Hypertrophic growth in response to transverse aortic constriction was attenuated in CycD2-null compared with wild-type mice. Blocking the increase in CycD2 in response to hypertrophic agonists prevented phosphorylation of CycD2-target Rb (retinoblastoma gene product) in vitro, and mice deficient for Rb had potentiated hypertrophic growth. Hypertrophic growth requires new protein synthesis and transcription of tRNA genes by RNA polymerase (pol) III, which increases with hypertrophic signals. This load-induced increase in RNA pol III activity is augmented in Rb-deficient hearts. Rb binds and represses Brf-1 and TATA box binding protein (TBP), subunits of RNA pol III-specific transcription factor B, in adult myocardium under basal conditions. However, this association is disrupted in response to transverse aortic constriction. RNA pol III activity is unchanged in CycD2(-/-) myocardium after transverse aortic constriction, and there is no dissociation of TBP from Rb. These investigations identify an essential role for the CycD2-Rb pathway as a governor of cardiac myocyte enlargement in response to biomechanical stress and, more fundamentally, as a regulator of the load-induced activation of RNA pol III.


Asunto(s)
Cardiomegalia/metabolismo , Ciclinas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , ARN Polimerasa III/metabolismo , Proteína de Retinoblastoma/metabolismo , Factores de Edad , Animales , Cardiomegalia/patología , Tamaño de la Célula , Células Cultivadas , Ciclina D2 , Ciclinas/genética , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F3/metabolismo , Factor de Transcripción E2F4/metabolismo , Factor de Transcripción E2F5/metabolismo , Ratones , Ratones Mutantes , Miocardio/citología , Miocitos Cardíacos/citología , Fosforilación , Ratas , Proteína de Retinoblastoma/genética , Transducción de Señal/fisiología , Estrés Mecánico
16.
PLoS One ; 15(10): e0239671, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33002059

RESUMEN

In spite of the widespread use of electronic cigarettes, also known as e-cigarettes, and the proposed adverse cardiac effects of nicotine, the detrimental effects of e-cigarettes on the heart are not well known. This study examines the detrimental effects of e-cigarettes with nicotine at doses that yield circulating nicotine and cotinine in the ranges similar to the levels found in habitual smokers, and a high fat diet (HFD) on cardiac structure and function in a commonly used model of diet-induced obesity (DIO). C57BL/6J mice on an HFD were exposed to e-cigarette in the presence (2.4% nicotine) or absence (0% nicotine) of nicotine and saline aerosol for 12 weeks. Echocardiographic data demonstrated a decrease in left ventricular (LV) fractional shortening, LV ejection fraction, and velocity of circumferential fiber shortening (VCF) in mice treated with e-cigarette (2.4% nicotine) compared to e-cigarette (0% nicotine) or saline exposed mice. Cardiomyocytes (CMs) of mice treated with e-cigarette (2.4% nicotine) exhibited LV abnormalities, including lipid accumulation (ventricular steatosis), myofibrillar derangement and destruction, and mitochondrial hypertrophy, as revealed by transmission electron microscopy. The detrimental effects of e-cigarettes (2.4% nicotine) on cardiac structure and function was accompanied by increased oxidative stress, plasma free fatty acid levels, CM apoptosis, and inactivation of AMP-activated protein kinase and activation of its downstream target, acetyl-CoA-carboxylase. Our results indicate profound adverse effects of e-cigarettes (2.4% nicotine) on the heart in obese mice and raise questions about the safety of the nicotine e-cigarettes use.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Sistemas Electrónicos de Liberación de Nicotina , Corazón/efectos de los fármacos , Ratones Obesos , Miocardio/patología , Fumar/efectos adversos , Animales , Cotinina/sangre , Ecocardiografía , Ácidos Grasos no Esterificados/sangre , Corazón/fisiopatología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Miocardio/ultraestructura , Nicotina/efectos adversos , Nicotina/sangre , Estrés Oxidativo/efectos de los fármacos , Disfunción Ventricular Izquierda/inducido químicamente
17.
J Mol Cell Cardiol ; 47(4): 552-60, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19683723

RESUMEN

Na,K-ATPase is composed of two essential alpha- and beta-subunits, both of which have multiple isoforms. Evidence indicates that the Na,K-ATPase enzymatic activity as well as its alpha(1), alpha(3) and beta(1) isoforms are reduced in the failing human heart. The catalytic alpha-subunit is the receptor for cardiac glycosides such as digitalis, used for the treatment of congestive heart failure. The role of the Na,K-ATPase beta(1)-subunit (Na,K-beta(1)) in cardiac function is not known. We used Cre/loxP technology to inactivate the Na,K-beta(1) gene exclusively in the ventricular cardiomyocytes. Animals with homozygous Na,K-beta(1) gene excision were born at the expected Mendelian ratio, grew into adulthood, and appeared to be healthy until 10 months of age. At 13-14 months, these mice had 13% higher heart/body weight ratios, and reduced contractility as revealed by echocardiography compared to their wild-type (WT) littermates. Pressure overload by transverse aortic constriction (TAC) in younger mice, resulted in compensated hypertrophy in WT mice, but decompensation in the Na,K-beta(1) KO mice. The young KO survivors of TAC exhibited decreased contractile function and mimicked the effects of the Na,K-beta(1) KO in older mice. Further, we show that intact hearts of Na,K-beta(1) KO anesthetized mice as well as isolated cardiomyocytes were insensitive to ouabain-induced positive inotropy. This insensitivity was associated with a reduction in NCX1, one of the proteins involved in regulating cardiac contractility. In conclusion, our results demonstrate that Na,K-beta(1) plays an essential role in regulating cardiac contractility and that its loss is associated with significant pathophysiology of the heart.


Asunto(s)
Eliminación de Gen , Contracción Miocárdica/efectos de los fármacos , Miocardio/enzimología , Ouabaína/farmacología , Subunidades de Proteína/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Cardiomegalia/enzimología , Cardiomegalia/fisiopatología , Separación Celular , Pruebas de Función Cardíaca , Immunoblotting , Ratones , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Especificidad de Órganos/efectos de los fármacos , Presión , Intercambiador de Sodio-Calcio/metabolismo
18.
J Surg Res ; 153(2): 217-23, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18694573

RESUMEN

BACKGROUND: Adipose tissue consists of mature adipocytes and a mononuclear cell fraction termed adipose tissue-derived cells (ADCs). Within these heterogeneous ADCs exists a mesenchymal stem cell-like cell population, termed adipose tissue-derived stem cells. An important clinical advantage of adipose tissue-derived stem cells over other mesenchymal stem cell populations is the fact that they can be isolated in real time in sufficient quantity, such that ex vivo expansion is not necessary to obtain clinically relevant numbers for various therapeutic applications. MATERIALS AND METHODS: The aim of this investigation was to evaluate the therapeutic potential of freshly isolated ADCs in treating rats acutely following myocardial infarction. Rats underwent 45 min of left anterior descending artery occlusion followed by reperfusion. Fifteen minutes post-myocardial infarction, saline or 5 x 10(6) ADCs from green fluorescent protein-expressing transgenic rats were injected into the chamber of the left ventricle. Left ventricular function and morphometry was followed with 2-D echocardiography for 12 wk, at which point hearts were harvested for histological analysis. RESULTS: Twelve weeks following cell therapy, left ventricular end-diastolic dimension was less dilated while the ejection fraction and cardiac output of ADC-treated rats were significantly improved compared to control rats (P < 0.01). Despite this benefit, absolute engraftment rates were low. This paradox may be partially explained by ADC-induced increases in both capillary and arteriole densities. CONCLUSIONS: These data confirm the therapeutic benefit of freshly isolated ADCs delivered post-MI and suggest a novel beneficial mechanism for ADCs through a potent proangiogenic effect.


Asunto(s)
Tejido Adiposo/citología , Trasplante de Células Madre Mesenquimatosas , Infarto del Miocardio/terapia , Neovascularización Fisiológica , Remodelación Ventricular , Animales , Arteriolas/crecimiento & desarrollo , Capilares/crecimiento & desarrollo , Vasos Coronarios/crecimiento & desarrollo , Masculino , Ratas , Ratas Endogámicas Lew , Función Ventricular Izquierda
19.
J Surg Res ; 148(2): 164-71, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18067924

RESUMEN

The mechanism(s) underlying the beneficial effects of adult mesenchymal stem cells (MSCs) after myocardial infarction (MI) is poorly understood. One possible explanation is the ability of MSCs to secrete cytokines, which modulate cardiomyocyte survival and function. MSCs express at least two cytoprotective cytokines, hepatocyte growth factor (HGF) and stromal cell-derived factor-1 alpha (CXCL12). The aim of our study was to compare the effects of these two cytokines administered acutely post-MI. We subjected adult male Lewis rats to myocardial ischemia/reperfusion injury. Immediately upon reperfusion, polymers saturated with HGF or CXCL12 were placed onto the infarcted anterior wall and the rats were allowed to recover. Echocardiographic analysis at 4 wk post-MI to assess left ventricular (LV) function revealed that LV ejection fraction was increased in the HGF treated group compared with the phosphate-buffered saline (PBS) control group. Likewise, LV end diastolic dimension was reduced in the HGF treated group compared with the PBS control group. Similarly, invasive hemodynamics at 12 wk showed improved contractility and relaxation in the HGF treated group compared with the PBS control group. In contrast, no significant effect on LV function was seen in the CXCL12 treated group. To determine the potential mechanism for this effect, infarct size (IFS) at 72 h was determined. IFS was decreased 4.2-fold in the HGF treated group compared with the PBS control group. Thus, HGF acutely post-MI using polymer delivery reduces IFS, leading to beneficial effects on post-MI LV remodeling.


Asunto(s)
Quimiocina CXCL12/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Células Cultivadas , Quimiocina CXCL12/farmacología , Factor de Crecimiento de Hepatocito/farmacología , Factor de Crecimiento de Hepatocito/uso terapéutico , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-met/metabolismo , Ratas , Ratas Endogámicas Lew , Volumen Sistólico/efectos de los fármacos , Volumen Sistólico/fisiología , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiología
20.
J Card Fail ; 13(4): 318-29, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17517353

RESUMEN

BACKGROUND: The cardiac sodium-calcium exchanger (NCX1) is a key sarcolemmal protein for the maintenance of calcium homeostasis in the heart. Because heart failure is associated with increased expression of NCX1, heterozygous (HET) and homozygous (HOM) transgenic mice overexpressing NCX1 were developed and evaluated. METHODS AND RESULTS: The NCX1 transgenic mice display 2.3-fold (HET) and 3.1-fold (HOM) increases in exchanger activity from wild-type (WT) mice. Functional information was obtained by echocardiography and catheterizations before and after hemodynamic stress from pregnancy, treadmill exercise or transaortic constriction (TAC). HET and HOM mice exhibited hypertrophy and blunted responses with beta-adrenergic stimulation. Postpartum mice from all groups were hypertrophied, but only the HOM mice exhibited premature death from heart failure. HOM mice became exercise intolerant after 6 weeks of daily treadmill running. After 21 days TAC, HET, and HOM mice exhibited significant contractile dysfunction and 15% to 40% mortality with clinical evidence of heart failure. CONCLUSIONS: Hemodynamic stress results in a compensated hypertrophy in WT mice, but NCX1 transgenic mice exhibit decreased contractile function and heart failure in proportion to their level of NCX1 expression. Thus exchanger overexpression in mice leads to abnormal calcium handling and a decompensatory transition to heart failure with stress.


Asunto(s)
Cardiomegalia/genética , Modelos Animales de Enfermedad , Expresión Génica/genética , Insuficiencia Cardíaca/genética , Intercambiador de Sodio-Calcio/metabolismo , Animales , Animales Modificados Genéticamente , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/metabolismo , Masculino , Ratones , Fenotipo , Intercambiador de Sodio-Calcio/genética , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA