RESUMEN
BACKGROUND: Blueberries contain high levels of polyphenolic compounds with high in vitro antioxidant capacities. Their consumption has been associated with improved vascular and metabolic health. PURPOSE: The objective was to examine the effects of blueberry supplement consumption on metabolic syndrome (MetS) parameters and potential underlying mechanisms of action. METHODS: A randomized double-blind placebo-controlled intervention trial was conducted in adults at risk of developing MetS. Participants consumed 50 g daily of either a freeze-dried highbush blueberry powder (BBP) or a placebo powder for 8 weeks (n = 49). MetS phenotypes were assessed at weeks 0, 4 and 8. Fasting blood gene expression profiles and plasma metabolomic profiles were examined at baseline and week 8 to assess metabolic changes occurring in response to the BBP. A per-protocol analysis was used. RESULTS: A significant treatment effect was observed for plasma triglyceride levels that was no longer significant after further adjustments for age, sex, BMI and baseline values. In addition, the treatment*time interactions were non-significant therefore suggesting that compared with the placebo, BBP had no statistically significant effect on body weight, blood pressure, fasting plasma lipid, insulin and glucose levels, insulin resistance (or sensitivity) or glycated hemoglobin concentrations. There were significant changes in the expression of 49 genes and in the abundance of 35 metabolites following BBP consumption. Differentially regulated genes were clustered in immune-related pathways. CONCLUSION: An 8-week BBP intervention did not significantly improve traditional markers of cardiometabolic health in adults at risk of developing MetS. However, changes in gene expression and metabolite abundance suggest that clinically significant cardiometabolic changes could take longer than 8 weeks to present and/or could result from whole blueberry consumption or a higher dosage. BBP may also have an effect on factors such as immunity even within a shorter 8-week timeframe. CLINICAL TRIAL REGISTRATION: clinicaltrials.gov, NCT03266055 , 2017.
RESUMEN
Elevated plasma branched-chain amino acids (BCAA) and C3 and C5 acylcarnitines (AC) levels observed in individuals with insulin resistance (IR) might be influenced by dietary protein intakes. This study explores the associations between dietary protein sources, plasma BCAA levels and C3 and C5 ACs in normal weight (NW) or overweight (OW) individuals with or without metabolic syndrome (MS). Data from 199 men and women aged 18â»55 years with complete metabolite profile were analyzed. Associations between metabolic parameters, protein sources, plasma BCAA and AC levels were tested. OW/MS+ consumed significantly more animal protein (p = 0.0388) and had higher plasma BCAA levels (p < 0.0001) than OW/MS- or NW/MS- individuals. Plasma BCAA levels were not associated with BCAA intakes in the whole cohort, while there was a trend for an association between plasma BCAA levels and red meat or with animal protein in OW/MS+. These associations were of weak magnitude. In NW/MS- individuals, the protein sources associated with BCAA levels varied greatly with adjustment for confounders. Plasma C3 and C5 ACs were associated with plasma BCAA levels in the whole cohort (p < 0.0001) and in subgroups based on OW and MS status. These results suggest a modest association of meat or animal protein intakes and an association of C3 and C5 ACs with plasma BCAA levels, obesity and MS.