Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biol Lett ; 18(3): 20220035, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35291885

RESUMEN

In nature, light is a key driver of animal behaviour and physiology. When studying captive or laboratory animals, researchers usually expose animals to a period of darkness, to mimic night. However, 'darkness' is often poorly quantified and its importance is generally underappreciated in animal research. Even small differences in nocturnal light conditions can influence biology. When light levels during the dark phase are not reported accurately, experiments can be impossible to replicate and compare. Furthermore, when nocturnal light levels are unrealistically dark or bright, the research is less ecologically relevant. Such issues are exacerbated by huge differences in the sensitivity of different light meters, which are not always described in study methods. We argue that nocturnal light levels need to be reported clearly and precisely, particularly in studies of animals housed indoors (e.g. '<0.03 lux' rather than '0 lux' or 'dark'), and that these light levels should reflect conditions that the animal would experience in a natural context.


Asunto(s)
Experimentación Animal , Iluminación , Animales , Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Oscuridad , Luz
2.
Phys Chem Chem Phys ; 23(23): 13405-13418, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34105537

RESUMEN

Imidazolium-based cations and the hexafluorophosphate anion are among the most commonly used ionic liquids (ILs). Yet, the nature and strength of the intrinsic cation-anion interactions, and how they influence the macroscopic properties of these ILs are still not well understood. Threshold collision-induced dissociation is utilized to determine the bond dissociation energies (BDEs) of the 2 : 1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [2Cnmim:PF6]+. The cation, [Cnmim]+, is varied across the series, 1-ethyl-3-methylimidazolium [C2mim]+, 1-butyl-3-methylimidazolium [C4mim]+, 1-hexyl-3-methylimidazolium [C6mim]+, 1-octyl-3-methylimidazolium [C8mim]+, to examine the structural and energetic effects of the size of the 1-alkyl substituent of the cation on the binding to [PF6]-. Complementary electronic structure methods are employed for the [Cnmim]+ cations, (Cnmim:PF6) ion pairs, and [2Cnmim:PF6]+ clusters to elucidate details of the cation-anion interactions and their impact on structure and energetics. Multiple levels of theory are benchmarked with the measured BDEs including B3LYP, B3LYP-GD3BJ, and M06-2X each with the 6-311+G(d,p) basis set for geometry optimizations and frequency analyses and the 6-311+G(2d,2p) basis set for energetic determinations. The modest structural variation among the [Cnmim]+ cations produces only minor structural changes and variation in the measured BDEs of the [2Cnmim:PF6]+ clusters. Present results are compared to those previously reported for the analogous 1-alkyl-3-methylimidazolium tetrafluoroborate IL clusters to compare the effects of these anions on the nature and strength of the intrinsic binding interactions.

3.
Phys Chem Chem Phys ; 23(33): 18145-18162, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34612278

RESUMEN

Ionic liquids (ILs) exhibit unique properties that have led to their development and widespread use for a variety of applications. Development efforts have generally focused on achieving desired macroscopic properties via tuning of the IL through variation of the cations and anions. Both the macroscopic and microscopic properties of an IL influence its tunability and thus feasibility of use for selected applications. Works geared toward a microscopic understanding of the nature and strength of the intrinsic cation-anion interactions of ILs have been limited to date. Specifically, the intrinsic strength of the cation-anion interactions in ILs is largely unknown. In previous work, we employed threshold collision-induced dissociation (TCID) approaches supported and enhanced by electronic structure calculations to determine the bond dissociation energies (BDEs) and characterize the nature of the cation-anion interactions in a series of four 2 : 1 clusters of 1-alkyl-3-methylimidazolium cations with the hexafluorophosphate anion, [2Cnmim:PF6]+. To examine the effects of the 1-alkyl chain on the structure and energetics of binding, the cation was varied over the series: 1-ethyl-3-methylimidazolium, [C2mim]+, 1-butyl-3-methylimidazolium, [C4mim]+, 1-hexyl-3-methylimidazolium, [C6mim]+, and 1-octyl-3-methylimidazolium, [C8mim]+. The variation in the strength of binding among these [2Cnmim:PF6]+ clusters was found to be similar in magnitude to the average experimental uncertainty in the measurements. To definitively establish an absolute order of binding among these [2Cnmim:PF6]+ clusters, we extend this work again using TCID and electronic structure theory approaches to include competitive binding studies of three mixed 2 : 1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [Cn-2mim:PF6:Cnmim]+ for n = 4, 6, and 8. The absolute BDEs of these mixed [Cn-2mim:PF6:Cnmim]+ clusters as well as the absolute difference in the strength of the intrinsic binding interactions as a function of the cation are determined with significantly improved precision. By combining the thermochemical results of the previous independent and present competitive measurements, the BDEs of the [2Cnmim:PF6]+ clusters are both more accurately and more precisely determined. Comparisons are made to results for the analogous [2Cnmim:BF4]+ and [Cn-2mim:BF4:Cnmim]+ clusters previously examined to elucidate the effects of the [PF6]- and [BF4]- anions on the binding.

4.
Phys Chem Chem Phys ; 23(38): 21959-21971, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34569570

RESUMEN

Cisplatin, (NH3)2PtCl2, has been known as a successful metal-based anticancer drug for more than half a century. Its analogue, Argplatin, arginine-linked cisplatin, (Arg)PtCl2, is being investigated because it exhibits reactivity towards DNA and RNA that differs from that of cisplatin. In order to understand the basis for its altered reactivity, the deprotonated and sodium cationized forms of Argplatin, [(Arg-H)PtCl2]- and [(Arg)PtCl2 + Na]+, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy in the IR fingerprint and hydrogen-stretching regions. Complementary electronic structure calculations are performed using density functional theory approaches to characterize the stable structures of these complexes and to predict their infrared spectra. Comparison of the theoretical IR spectra predicted for various stable conformations of these Argplatin complexes to their measured IRMPD spectra enables determination of the binding mode(s) of Arg to the Pt metal center to be identified. Arginine is found to bind to Pt in a bidentate fashion to the backbone amino nitrogen and carboxylate oxygen atoms in both the [(Arg-H)PtCl2]- and [(Arg)PtCl2 + Na]+ complexes, the NO- binding mode. The neutral side chain of Arg also interacts with the Pt center to achieve additional stabilization in the [(Arg-H)PtCl2]- complex. In contrast, Na+ binds to both chlorido ligands in the [(Arg)PtCl2 + Na]+ complex and the protonated side chain of Arg is stabilized via hydrogen-bonding interactions with the carboxylate moiety. These findings are consistent with condensed-phase results, indicating that the NO- binding mode of arginine to Pt is preserved in the electrospray ionization process even under variable pH and ionic strength.


Asunto(s)
Antineoplásicos/química , Arginina/química , Cisplatino/química , Óxido Nítrico/química , Platino (Metal)/química , Sitios de Unión , Teoría Funcional de la Densidad , Estructura Molecular , Espectrofotometría Infrarroja
5.
J Phys Chem A ; 125(27): 5939-5955, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34228469

RESUMEN

Repetitive nucleic acid sequences, which occur in abundance throughout the mammalian genome, are of enormous research interest due to their potential to adopt fascinating and unusual molecular structures such as the i-motif. In remarkable contrast to the DNA double helix, i-motif conformations are stabilized by protonated cytosine base pairs, (Cyt)H+(Cyt), that are centrally located in the core of the i-motif and intercalated vertically in an antiparallel fashion. An in-depth understanding of how modifications influence the stability of i-motif conformations is a prerequisite to understanding their biological functions and the development of effective means of tuning their stability for specific medical and technological applications. Here, the influence of the 2'- and 3'-hydroxy substituents of the sugar moieties and 5-methylation of the cytosine nucleobases on the base-pairing interactions of protonated cytidine nucleoside analogue base pairs, (xCyd)H+(xCyd), are examined by complementary threshold collision-induced dissociation techniques and computational methods. The xCyd nucleosides examined include the canonical DNA and RNA cytidine nucleosides, 2'-deoxycytidine (dCyd) and cytidine (Cyd), as well as several modified cytidine nucleoside analogues, 2',3'-dideoxycytidine (ddCyd), 5-methyl-2'-deoxycytidine (m5dCyd), and 5-methylcytidine (m5Cyd). Comparisons among these model base pairs indicate that the 2'- and 3'-hydroxy substituents of the sugar moieties have very little influence on the strength of the base-pairing interactions, whereas 5-methylation of the cytosine nucleobases is found to enhance the strength of the base-pairing interactions. The increase in stability resulting from 5-methylation is only modest but is more than twice as large for the DNA than RNA protonated cytidine base pair. Overall, present results suggest that canonical DNA i-motif conformations should be more stable than analogous RNA i-motif conformations and that 5-methylation of cytosine residues, a significant epigenetic marker, provides greater stabilization to DNA than RNA i-motif conformations.


Asunto(s)
Emparejamiento Base , Citidina/análogos & derivados , Metilación , Estructura Molecular , Protones , Termodinámica
6.
J Phys Chem A ; 124(49): 10199-10215, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33231458

RESUMEN

Ionic liquid (IL) development efforts have focused on achieving desired properties via tuning of the IL through variation of the cations and anions. However, works geared toward a microscopic understanding of the nature and strength of the intrinsic cation-anion interactions of ILs have been rather limited such that the intrinsic strength of the cation-anion interactions in ILs is largely unknown. In previous work, we employed threshold collision-induced dissociation approaches supported and enhanced by electronic structure calculations to characterize the nature of the cation-anion interactions in and determine the bond dissociation energies (BDEs) of a series of four 2:1 clusters of 1-alkyl-3-methylimidazolium cations and tetrafluoroborate anions, [2Cnmim:BF4]+. The cation was varied over the series: 1-ethyl-3-methylimidazolium, [C2mim]+, 1-butyl-3-methylimidazolium, [C4mim]+, 1-hexyl-3-methylimidazolium, [C6mim]+, and 1-octyl-3-methylimidazolium, [C8mim]+, to determine the structural and energetic effects of the size of the 1-alkyl substituent on the binding. The variation in the strength of binding determined for these [2Cnmim:BF4]+ clusters was found to be similar in magnitude to the average experimental uncertainty in these determinations. To definitively establish an absolute order of binding among these [2Cnmim:BF4]+ clusters, we extend this work here to include competitive binding studies of three mixed 2:1 clusters of 1-alkyl-3-methylimidazolium cations and tetrafluoroborate anions, [Cn-2mim:BF4:Cnmim]+ for n = 4, 6, and 8. Importantly, the results of the present work simultaneously provide the absolute BDEs of these mixed [Cn-2mim:BF4:Cnmim]+ clusters and the absolute relative order of the intrinsic binding interactions as a function of the cation with significantly improved precision. Further, by combining the thermochemical results of the previous and present studies, the BDEs of the [2Cnmim:BF4]+ clusters are more accurately and precisely determined.

7.
J Phys Chem A ; 124(49): 10181-10198, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33231466

RESUMEN

Ionic liquids (ILs) have become increasingly popular due to their useful and unique properties, yet there are still many unanswered questions regarding their fundamental interactions. In particular, details regarding the nature and strength of the intrinsic cation-anion interactions and how they influence the macroscopic properties of ILs are still largely unknown. Elucidating the molecular-level details of these interactions is essential to the development of better models for describing ILs and enabling the purposeful design of ILs with properties tailored for specific applications. Current uses of ILs are widespread and diverse and include applications for energy storage, electrochemistry, designer/green solvents, separations, and space propulsion. To advance the understanding of the energetics, conformations, and dynamics of gas-phase IL clustering relevant to space propulsion, threshold collision-induced dissociation approaches are used to measure the bond dissociation energies (BDEs) of the 2:1 clusters of 1-alkyl-3-methylimidazolium cations and tetrafluoroborate, [2Cnmim:BF4]+. The cation, [Cnmim]+, is varied across the series, 1-ethyl-3-methylimidazolium [C2mim]+, 1-butyl-3-methylimidazolium [C4mim]+, 1-hexyl-3-methylimidazolium [C6mim]+, and 1-octyl-3-methylimidazolium [C8mim]+, to examine the structural and energetic effects of the size of the 1-alkyl substituent on binding. Complementary electronic structure calculations are performed to determine the structures and energetics of the [Cnmim]+ and [BF4]- ions and their binding preferences in the (Cnmim:BF4) ion pairs and [2Cnmim:BF4]+ clusters. Several levels of theory, B3LYP, B3LYP-GD3BJ, and M06-2X, using the 6-311+G(d,p) basis set for geometry optimizations and frequency analyses and the 6-311+G(2d,2p) basis set for energetics, are benchmarked to examine their abilities to properly describe the nature of the binding interactions and to reproduce the measured BDEs. The modest structural variation among these [Cnmim]+ cations produces only minor structural changes and variation in the measured BDEs of the [2Cnmim:BF4]+ clusters. Present findings indicate that the dominant cation-anion interactions involve the 3-methylimidazolium moieties and that these clusters are sufficiently small that differences in packing effects associated with the variable length of the 1-alkyl substituents are not yet significant.

8.
Glob Chang Biol ; 24(3): 925-932, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29215778

RESUMEN

Given the global continuous rise, artificial light at night is often considered a driving force behind moth population declines. Although negative effects on individuals have been shown, there is no evidence for effects on population sizes to date. Therefore, we compared population trends of Dutch macromoth fauna over the period 1985-2015 between moth species that differ in phototaxis and adult circadian rhythm. We found that moth species that show positive phototaxis or are nocturnally active have stronger negative population trends than species that are not attracted to light or are diurnal species. Our results indicate that artificial light at night is an important factor in explaining declines in moth populations in regions with high artificial night sky brightness. Our study supports efforts to reduce the impacts of artificial light at night by promoting lamps that do not attract insects and reduce overall levels of illumination in rural areas to reverse declines of moth populations.


Asunto(s)
Ritmo Circadiano , Luz , Iluminación , Mariposas Nocturnas/fisiología , Animales , Conservación de los Recursos Naturales , Conducta Alimentaria , Países Bajos , Fototaxis , Dinámica Poblacional
9.
Proc Biol Sci ; 284(1855)2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28566484

RESUMEN

Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but were equally abundant in red light and darkness. The agile, opportunistically feeding Pipistrellus species were significantly more abundant around white and green light, most likely because of accumulation of insects, but equally abundant in red illuminated transects compared to dark control. Forest-dwelling Myotis and Plecotus species and more synanthropic Pipistrellus species are thus least disturbed by red light. Hence, in order to limit the negative impact of light at night on bats, white and green light should be avoided in or close to natural habitat, but red lights may be used if illumination is needed.


Asunto(s)
Conducta Animal/efectos de la radiación , Quirópteros/fisiología , Luz , Animales , Iluminación
10.
Glob Chang Biol ; 23(11): 4987-4994, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28597541

RESUMEN

The natural nighttime environment is increasingly polluted by artificial light. Several studies have linked artificial light at night to negative impacts on human health. In free-living animals, light pollution is associated with changes in circadian, reproductive, and social behavior, but whether these animals also suffer from physiologic costs remains unknown. To fill this gap, we made use of a unique network of field sites which are either completely unlit (control), or are artificially illuminated with white, green, or red light. We monitored nighttime activity of adult great tits, Parus major, and related this activity to within-individual changes in physiologic indices. Because altered nighttime activity as a result of light pollution may affect health and well-being, we measured oxalic acid concentrations as a biomarker for sleep restriction, acute phase protein concentrations and malaria infection as indices of immune function, and telomere lengths as an overall measure of metabolic costs. Compared to other treatments, individuals roosting in the white light were much more active at night. In these individuals, oxalic acid decreased over the course of the study. We also found that individuals roosting in the white light treatment had a higher probability of malaria infection. Our results indicate that white light at night increases nighttime activity levels and sleep debt and affects disease dynamics in a free-living songbird. Our study offers the first evidence of detrimental effects of light pollution on the health of free-ranging wild animals.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Contaminación Ambiental , Luz/efectos adversos , Sueño/efectos de la radiación , Pájaros Cantores/fisiología , Animales , Metabolismo Energético/efectos de la radiación , Femenino , Inmunidad Innata/efectos de la radiación , Masculino , Actividad Motora/efectos de la radiación
11.
Biol Lett ; 13(3)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28250209

RESUMEN

One major, yet poorly studied, change in the environment is nocturnal light pollution, which strongly alters habitats of nocturnally active species. Artificial night lighting is often considered as driving force behind rapid moth population declines in severely illuminated countries. To understand these declines, the question remains whether artificial light causes only increased mortality or also sublethal effects. We show that moths subjected to artificial night lighting spend less time feeding than moths in darkness, with the shortest time under light conditions rich in short wavelength radiation. These findings provide evidence for sublethal effects contributing to moth population declines. Because effects are strong under various types of light compared with dark conditions, the potential of spectral alterations as a conservation tool may be overestimated. Therefore, restoration and maintenance of darkness in illuminated areas is essential for reversing declines of moth populations.


Asunto(s)
Conducta Alimentaria/efectos de la radiación , Iluminación/efectos adversos , Mariposas Nocturnas/efectos de la radiación , Animales , Conservación de los Recursos Naturales/métodos , Femenino , Luz/efectos adversos , Masculino , Mariposas Nocturnas/fisiología
12.
Phys Chem Chem Phys ; 19(27): 17637-17652, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28665436

RESUMEN

Uridine (Urd) is one of the naturally occurring pyrimidine nucleosides of RNA. 2'-Deoxyuridine (dUrd) is a naturally occurring modified form of Urd, but is not one of the canonical DNA nucleosides. In order to understand the effects of sodium cationization on the conformations and energetics of Urd and dUrd, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and density functional theory (DFT) calculations are performed. By comparing the calculated IR spectra of [Urd+Na]+ and [dUrd+Na]+ with the measured IRMPD spectra, the stable low-energy conformers populated in the experiments are determined. Anti oriented bidentate O2 and O2' binding conformers of [Urd+Na]+ are the dominant conformers populated in the experiments, whereas syn oriented tridentate O2, O4', and O5' binding conformers of [dUrd+Na]+ are dominantly populated in the experiments. The 2'-hydroxyl substituent of Urd stabilizes the anti oriented O2 binding conformers of [Urd+Na]+. Significant differences between the measured IRMPD and calculated IR spectra for complexes of [Urd+Na]+ and [dUrd+Na]+ involving minor tautomeric forms of the nucleobase make it obvious that none are populated in the experiments. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized Urd and dUrd follow the order: [dUrd+H]+ < [Urd+H]+ < [dUrd+Na]+ < [Urd+Na]+. The 2'-deoxy modification is found to weaken the glycosidic bond of dUrd versus that of Urd for the sodium cationized uridine nucleosides.


Asunto(s)
Desoxiuridina/química , Sodio/química , Uridina/química , Iones/química , Modelos Moleculares , Conformación Molecular , Protones , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja
13.
Biol Lett ; 11(8)2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26311159

RESUMEN

Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles have been disturbed as night-time darkness is increasingly replaced by artificial illumination. Investigating the physiological consequences of free-living organisms in artificially lit environments is crucial to determine whether nocturnal lighting disrupts circadian rhythms, changes behaviour, reduces fitness and ultimately affects population numbers. We make use of a unique, large-scale network of replicated field sites which were experimentally illuminated at night using lampposts emanating either red, green, white or no light to test effect on stress hormone concentrations (corticosterone) in a songbird, the great tit (Parus major). Adults nesting in white-light transects had higher corticosterone concentrations than in the other treatments. We also found a significant interaction between distance to the closest lamppost and treatment type: individuals in red light had higher corticosterone levels when they nested closer to the lamppost than individuals nesting farther away, a decline not observed in the green or dark treatment. Individuals with high corticosterone levels had fewer fledglings, irrespective of treatment. These results show that artificial light can induce changes in individual hormonal phenotype. As these effects vary considerably with light spectrum, it opens the possibility to mitigate these effects by selecting street lighting of specific spectra.


Asunto(s)
Corticosterona/sangre , Luz/efectos adversos , Iluminación/efectos adversos , Passeriformes/fisiología , Animales , Oscuridad , Reproducción/efectos de la radiación , Estrés Fisiológico
15.
J Am Soc Mass Spectrom ; 33(11): 2165-2180, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36279168

RESUMEN

Uridine (Urd), a canonical nucleoside of RNA, is the most commonly modified nucleoside among those that occur naturally. Uridine has also been an important target for the development of modified nucleoside analogues for pharmaceutical applications. In this work, the effects of 5-halogenation of uracil on the structures and glycosidic bond stabilities of protonated uridine nucleoside analogues are examined using tandem mass spectrometry and computational methods. Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and theoretical calculations are performed to probe the structural influences of these modifications. Energy-resolved collision-induced dissociation experiments along with survival yield analyses are performed to probe glycosidic bond stability. The measured IRMPD spectra are compared to linear IR spectra predicted for the stable low-energy conformations of these species computed at the B3LYP/6-311+G(d,p) level of theory to determine the conformations experimentally populated. Spectral signatures in the IR fingerprint and hydrogen-stretching regions allow the 2,4-dihydroxy protonated tautomers (T) and O4- and O2-protonated conformers to be readily differentiated. Comparisons between the measured and predicted spectra indicate that parallel to findings for uridine, both T and O4-protonated conformers of the 5-halouridine nucleoside analogues are populated, whereas O2-protonated conformers are not. Variations in yields of the spectral signatures characteristic of the T and O4-protonated conformers indicate that the extent of protonation-induced tautomerization is suppressed as the size of the halogen substituent increases. Trends in the energy-dependence of the survival yield curves find that 5-halogenation strengthens the glycosidic bond and that the enhancement in stability increases with the size of the halogen substituent.


Asunto(s)
Halogenación , Nucleósidos , Uridina/química , Protones , Modelos Moleculares , Espectrofotometría Infrarroja/métodos , Halógenos
16.
J Phys Chem B ; 126(45): 9246-9260, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36326184

RESUMEN

Despite its success as an anticancer drug, cisplatin suffers from resistance and produces side effects. To overcome these limitations, amino-acid-linked cisplatin analogues have been investigated. Lysine-linked cisplatin, Lysplatin, (Lys)PtCl2, exhibited outstanding reactivity toward DNA and RNA that differs from that of cisplatin. To gain insight into its differing reactivity, the structure of Lysplatin is examined here using infrared multiple photon dissociation (IRMPD) action spectroscopy. To probe the influence of the local chemical environment on structure, the deprotonated and sodium-cationized Lysplatin complexes are examined. Electronic structure calculations are performed to explore possible modes of binding of Lys to Pt, their relative stabilities, and to predict their infrared spectra. Comparisons of the measured IRMPD and predicted IR spectra elucidate the structures contributing to the experimental spectra. Coexistence of two modes of binding of Lys to Pt is found where Lys binds via the backbone and side-chain amino nitrogen atoms, NNs, or to the backbone amino and carboxylate oxygen atoms, NO-. Glycine-linked cisplatin and arginine-linked cisplatin complexes have previously been found to bind only via the NO- binding mode. Present results suggest that the NNs binding conformers may be key to the outstanding reactivity of Lysplatin toward DNA and RNA.


Asunto(s)
Lisina , Platino (Metal) , Lisina/química , Cisplatino , Espectrofotometría Infrarroja/métodos , ARN
17.
Integr Comp Biol ; 61(3): 1182-1190, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34180520

RESUMEN

The use of artificial light at night (ALAN) is increasing exponentially worldwide and there is growing evidence that ALAN contributes to the decline of insect populations. One of the most conspicuous ecological effects is the strong attraction of ALAN to flying insects. In several studies, light sources with strong short-wavelength emissions have been shown to attract the highest numbers of flying insects. Furthermore, flying stages of aquatic insects are reported to be more vulnerable to ALAN than flying stages of terrestrial insects. This is concerning because freshwater habitats are likely affected by ALAN that originates from human activity centers, which are typically close to sources of freshwater. However, the effects of ALAN on aquatic insects, which spend their larval phase (amphibiotic insects) or their whole life cycle (fully aquatic insects) in freshwaters, are entirely understudied. Here, we investigated the phototaxis of aquatic insects to ALAN at different wavelengths and intensities. We used floating light traps and compared four, near-monochromatic, lights (blue, green, red, and yellow) at two different photopic light intensities in a ditch system, which was not exposed to ALAN previously. Similar to flying stages of (aquatic and terrestrial) insects, we found a strong positive phototaxis of aquatic life stages. However, in contrast to the flying stages, there is no clear preference for short-wavelength light. Overall, responsivity to wavelengths in the center of the visible range (green, yellow; 500-600 nm) was significant for all orders of aquatic insects studied, and the nymphs of Ephemeroptera did not respond to blue light at all. This is likely an adaption to how light is attenuated in freshwater systems, where not only the water itself but also a variety of optical constituents act as a color filter, often like in our case filtering out short-wavelength light. Therefore, insects living in freshwater bodies often live in longer wavelength-dominated environments and might therefore be especially sensitive to green/yellow light. In conclusion, the different spectral sensitivities of both aquatic and flying insects should be taken into account when planning lighting near freshwater.


Asunto(s)
Contaminación Ambiental , Insectos , Luz , Fototaxis , Animales , Ecosistema
18.
Insects ; 12(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34940205

RESUMEN

(1) The project "Tatort Streetlight" implements an insect-friendly road light design in a four year before-after, control-impact (BACI) approach involving citizen scientists. It will broaden the stakeholder interests from solely anthropogenic perspectives to include the welfare of insects and ecosystems. Motivated by the detrimental impacts of road lighting systems on insects, the project aims to find solutions to reduce the insect attraction and habitat fragmentation resulting from roadway illumination. (2) The citizen science approach invites stakeholders to take part and join forces for the development of a sustainable and environmentally friendly road lighting solution. Here, we describe the project strategy, stakeholder participation and motivation, and how the effects of the alternative road luminaire and lighting design can be evaluated. (3) The study compares the changes in (a) insect behavior, (b) night sky brightness, and (c) stakeholder participation and awareness. For this purpose, different experimental areas and stakeholders in four communities in Germany are identified. (4) The project transfers knowledge of adverse effects of improperly managed road illumination and interacts with various stakeholders to develop a new road lighting system that will consider the well-being of street users, local residents, and insects.

19.
Curr Biol ; 30(12): R694-R695, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32574627

RESUMEN

Van Grunsven et al. experimentally test the long-term effects of artificial light on natural moth populations. In the initial two years there was no effect on populations, but in the latter three years population sizes were reduced compared with the dark controls. This shows that artificial light negatively affects moth populations.


Asunto(s)
Luz/efectos adversos , Iluminación/efectos adversos , Mariposas Nocturnas/efectos de la radiación , Animales , Color , Conservación de los Recursos Naturales , Mariposas Nocturnas/fisiología , Países Bajos , Dinámica Poblacional
20.
J Am Soc Mass Spectrom ; 30(5): 832-845, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30850972

RESUMEN

Modified nucleosides have been an important target for pharmaceutical development for the treatment of cancer, herpes simplex virus, and the human immunodeficiency virus (HIV). Amongst these nucleoside analogues, those based on 2',3'-dideoxyribose sugars are quite common, particularly in anti-HIV applications. The gas-phase structures of several protonated 2',3'-dideoxyribose nucleosides are examined in this work and compared with those of the analogous protonated DNA, RNA, and arabinose nucleosides to elucidate the influence of the 2'- and combined 2',3'-hydroxyl groups on intrinsic structure. Infrared multiple photon dissociation (IRMPD) action spectra are collected for the protonated 2',3'-dideoxy forms of adenosine, guanosine, cytidine, thymidine and uridine, [ddAdo+H]+, [ddGuo+H]+, [ddCyd+H]+, [ddThd+H]+, and [ddUrd+H]+, in the IR fingerprint and hydrogen-stretching regions. Molecular mechanics conformational searching followed by electronic structure calculations generates low-energy conformers of the protonated 2',3'-dideoxynucleosides and corresponding predicted linear IR spectra to facilitate interpretation of the measured IRMPD action spectra. These experimental IRMPD spectra and theoretical calculations indicate that the absence of the 2'- and 3'-hydroxyls largely preserves the protonation preferences of the canonical forms. The spectra and calculated structures indicate a slight preference for C3'-endo sugar puckering. The presence of the 3'- and further 2'-hydroxyl increases the available intramolecular hydrogen-bonding opportunities and shifts the sugar puckering modes for all nucleosides but the guanosine analogues to a slight preference for C2'-endo over C3'-endo. Graphical Abstract.


Asunto(s)
Antivirales/química , Arabinosa/análogos & derivados , Desoxirribosa/análogos & derivados , Radical Hidroxilo/análisis , Nucleósidos/análogos & derivados , Arabinosa/análisis , Desoxirribosa/análisis , Análisis de Fourier , Rayos Infrarrojos , Espectrometría de Masas , Modelos Moleculares , Conformación Molecular , Protones , Purinas/química , Pirimidinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA