Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cytokine ; 179: 156639, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38733946

RESUMEN

AIMS: Polycystic ovarian syndrome (PCOS) is one of the most common (about 5-20%) reproductive disorders in women of reproductive age; it is characterized by polycystic ovaries, hyperandrogenism, and oligo/ anovulation. The levels and expression of ovarian adipokines are deregulated in the PCOS. Apelin is an adipokine that acts through its receptor (APJ) and is known to express in the various tissues including the ovary. It has also been suggested that apelin and APJ could be targeted as therapeutic adjuncts for the management of PCOS. However, no study has been conducted on the management of PCOS by targeting the apelin system. Thus, we aimed to evaluate its impact on combating PCOS-associated ovarian pathogenesis. METHODS: The current work employed a letrozole-induced-hyperandrogenism PCOS-like mice model to investigate the effects of apelin13 and APJ, antagonist ML221. The PCOS model was induced by oral administration of letrozole (1 mg/kg) for 21 days. A total of four experimental groups were made, control, PCOS control, PCOS + aplein13, and PCOS + ML221. The treatment of apelin13 and ML221 was given from day 22 for two weeks. KEY FINDINGS: The letrozole-induced PCOS-like features such as hyperandrogenism, cystic follicle, decreased corpus luteum, elevated levels of LH/FSH ratio, and up-regulation of ovarian AR expression were ameliorated by apelin13 and ML221 treatment. However, the PCOS-augmented oxidative stress and apoptosis were suppressed by apelin 13 treatments only. ML221 treatment still showed elevated oxidative stress and stimulated apoptosis as reflected by decreased antioxidant enzymes and increased active caspase3 and Bax expression. The expression of ERs was elevated in all groups except control. Furthermore, the PCOS model showed elevated expression of APJ and apelin13 treatment down-regulated its own receptor. Overall, observing the ovarian histology, corpus luteum formation, and decreased androgen levels by both apelin13 and ML221 showed ameliorative effects on the cystic ovary. SIGNIFICANCE: Despite the similar morphological observation of ovarian histology, apelin13 and ML221 exhibited opposite effects on oxidative stress and apoptosis. Therefore, apelin13 (which down-regulates APJ) and ML221 (an APJ antagonist) may have suppressed APJ signalling, which would account for our findings on the mitigation of polycystic ovarian syndrome. In conclusion, both apelin13 and ML221 mediated mitigation have different mechanisms, which need further investigation.


Asunto(s)
Receptores de Apelina , Apelina , Letrozol , Ovario , Síndrome del Ovario Poliquístico , Letrozol/farmacología , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Animales , Femenino , Receptores de Apelina/metabolismo , Ratones , Apelina/metabolismo , Ovario/metabolismo , Ovario/patología , Ovario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hiperandrogenismo/metabolismo , Hiperandrogenismo/inducido químicamente , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad
2.
Neuroendocrinology ; 114(3): 234-249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37899035

RESUMEN

INTRODUCTION: Apelin is an endogenous peptide, whose expression has been shown in the hypothalamus, pituitary, and ovary; furthermore, it is also called a neuropeptide, binding to apelin receptor (APJ) for various functions. It has been suggested that the hypothalamus, pituitary, and ovarian (HPO) axis is tightly regulated and factors and functions of the HPO axis can be modulated during the estrous cycle to influence reproductive status. To the best of our knowledge, the status of apelin and its receptor, APJ has not been investigated in the HPO axis during the estrous cycle. METHODS: To explore the expression of apelin and APJ in the HPO axis of mice during the estrous cycle, mice were divided into four groups: proestrus (Pro), estrus (Est), metestrus (Met), and diestrus (Di), and apelin and APJ were checked. Further, to explore the role of apelin in gonadotropin secretion, an in vitro study of the pituitary was performed at the Pro and Est stages. RESULT: The expression apelin and APJ in the hypothalamus showed elevation during the estrous cycle of postovulatory phases, Met, and Di. The immunolocalization of apelin and APJ in the anterior pituitary showed more abundance in the Est and Di. Our in vitro results showed that gonadotropin-releasing hormone agonist stimulated luteinizing hormone secretion was suppressed by the apelin 13 peptide from the pituitary of Pro and Est phases. This suggests an inhibitory role of apelin on gonadotropin secretion. The ovary also showed conspicuous changes in the presence of apelin and APJ during the estrous cycle. The expression of apelin and APJ coincides with folliculogenesis and corpus luteum formation and the expression of the apelin system in the different cell types of the ovary suggests its cell-specific role. Previous studies also showed that apelin has a stimulatory role in ovarian steroid secretion, proliferation, and corpus luteum. CONCLUSION: Overall our results showed that the apelin system changes along the HPO axis during the estrous cycle and might have an inhibitory at level of hypothalamus and pituitary and a stimulatory role at ovarian level.


Asunto(s)
Ovario , Enfermedades de la Hipófisis , Animales , Femenino , Ratones , Apelina/metabolismo , Receptores de Apelina/metabolismo , Ciclo Estral , Gonadotropinas/metabolismo , Ovario/metabolismo
3.
Cell Biol Int ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634302

RESUMEN

Apelin and its receptor (APJ) are expressed in the reproductive organs of some mammalian females. The function of oviduct has also been suggested to be compromised in the hyperandrogenism condition. However, expression of apelin and APJ has not been shown in the oviduct of hyperandrogenized mice. Thus, the present study has investigated the localization and expression of apelin and APJ in the letrozole-induced hyperandrogenized mice oviduct. Histomorphometric analysis showed decreased lumen of oviduct in the hyperandrogenized mice. Our results showed elevated expression of APJ and decreased abundance of apelin in the hyperandrogenized mice oviduct. This finding suggests impaired apelin signaling in the oviduct of hyperandrogenized mice. The expression of androgen receptor was upregulated while estrogen receptors were downregulated in the hyperandrogenized mice. The expression of HSP70 was also downregulated along with increased expression of active caspase 3 and BAX and decreased expression of BCL2 in hyperandrogenized mice. Furthermore, the phosphorylation of phospho-Ser473-Akt and phospho-Thr308-Akt also showed differential levels in the oviduct of hyperandrogenized mice. Whether this differential phosphorylation of Akt was solely due to impaired apelin signaling in the oviduct, remains unclear. Moreover, increased androgen signaling and suppressed estrogen signaling coincides with elevated apoptosis. In conclusion, hyperandrogenized conditions could also impair the gamete transport and fertilization process due to apoptosis in the oviduct. However, further study would be required to unravel the exact role of apelin signaling in the oviduct in relation to apoptosis.

4.
Mol Biol Rep ; 51(1): 103, 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38219219

RESUMEN

BACKGROUND: Heat stress is known to adversely affect testicular activity and manifest the pathogenesis of spermatogenesis. Morin hydrate is a plant-derived compound, which contains a wide range of biological activities. Thus, it is hypothesized that morin hydrate might have an ameliorative effect on heat-induced testicular impairment. There has not been any research on the impact of morin hydrate on heat-induced testicular damage. METHODS: The experimental mice were divided into four groups, groups1 as the normal control group (CN), and the second which underwent heat stress (HS) by immersing the lower body for 15 min in a thermostatically controlled water bath kept at 43 °C (HS), and third and fourth heat-stressed followed by two different dosages of morin hydrate 10 mg/kg (HSM10) and 100 mg/kg (HSM100) for 14 days. RESULTS: Morin hydrate treatment at 10 mg/kg improved, circulating testosterone levels (increases 3ßHSD), and oxidative stress along with improvement in the testis and caput and corpus epididymis histoarchitecture, however, both doses of morin hydrate improved sperm parameters. Morin hydrate treatment significantly increases germ cell proliferation, (GCNA, BrdU staining), expression of Bcl2 and decreases expression of active caspase 3. Heat stress also decreased the expression of AR, ER- α, and ER-ß, and Morin hydrate treatment increased the expression of these markers in the 10 mg/kg treatment group. CONCLUSION: Morin hydrate ameliorates heat-induced testicular impairment modulating testosterone synthesis, germ cell proliferation, and oxidative stress. These effects could be manifested by regulating androgen and estrogen receptors. However, the two doses showed differential effects of some parameters, which requires further investigations.


Asunto(s)
Flavonas , Semen , Testículo , Masculino , Ratones , Animales , Testículo/metabolismo , Espermatozoides/metabolismo , Espermatogénesis , Estrés Oxidativo , Testosterona/metabolismo
5.
Mol Biol Rep ; 51(1): 631, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722405

RESUMEN

Adipokines are now well-known to regulate reproduction. Visfatin is an adipokine expressed in the hypothalamus, pituitary, ovary, uterus, and placenta of different species, and since it has been found to modulate the endocrine secretion of the hypothalamus, pituitary gland and ovary, it may be considered a novel regulator of female reproduction. Although the majority of the literature explored its role in ovarian regulation, visfatin has also been shown to regulate uterine remodeling, endometrial receptivity and embryo development, and its expression in the uterus is steroid dependent. Like other adipokines, visfatin expression and levels are deregulated in pathological conditions including polycystic ovary syndrome. Thus, the present mini-review focuses on the role of visfatin in female reproduction under both physiological and pathological conditions.


Asunto(s)
Nicotinamida Fosforribosiltransferasa , Síndrome del Ovario Poliquístico , Reproducción , Femenino , Humanos , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Reproducción/fisiología , Reproducción/genética , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/fisiopatología , Animales , Ovario/metabolismo , Útero/metabolismo , Citocinas/metabolismo , Embarazo , Adipoquinas/metabolismo
6.
Drug Chem Toxicol ; 46(2): 330-342, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35114863

RESUMEN

Fruit of Cycas pectinata Buch.-Ham has been used as medicine by the local community in some parts of the north eastern state of India. Despite its uses for different purposes, the safety assessment study has not been conducted. Therefore, we have evaluated the acute and the sub-acute toxicity of methanolic extract of C. pectinata fruit (CPFE) in a mice model via oral route of administration. Phytochemicals analysis was carried out by liquid chromatography-mass spectroscopy (LC-MS), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR). The acute toxicity study was performed at a single dose of 1000, 3000 and 5000 mg/kg and the sub-acute toxicity study at a dose of 100, 300 and 500 mg/kg was administered daily for 28 days. The calculated Lethal dose 50 (LD50) of CPFE was found to be 4000 mg/kg. Both acute and sub-acute studies showed that 5000 mg/kg and 500 mg/kg dose was toxic to the mice. The results of acute toxicity showed CPFE could have a mild toxic effect on the kidney at a dose of 3000 and 5000 mg/kg, as some deteriorated changes in the kidney along with increase creatinine levels were observed. Acute toxicity also showed an increase in white blood cells (WBC) at a dose of 3000 mg/kg.However, sub-acute toxicity studies do not show any detrimental effects on liver, kidney and hematological parameters. Thus, it can be suggested that CPFE at a dose of 100 and 300 mg/kg would be safe for consumption. The phytochemicals analysis by LC-MS, NMR and FTIR showed the presence of 32 major chemical compounds with certain biological activity like anti-neoplastic, antioxidant, and possible modulator of steroid metabolism (cholesterol antagonist and agonist of testosterone 17ß-dehydrogenase) as predicted by PASS analysis.


Asunto(s)
Cycas , Extractos Vegetales , Ratones , Animales , Extractos Vegetales/toxicidad , Extractos Vegetales/química , Metanol , Semillas , Fitoquímicos/toxicidad , Pruebas de Toxicidad Aguda
7.
Andrologia ; 54(11): e14603, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36156807

RESUMEN

Insulin plays important role in testicular functions such as germ cell proliferation and steroidogenesis, despite its conventional role as a hypoglycaemic agent. It is also well known that testicular activity is severely get affected by heat stress and heat stress induces testicular pathogenesis. The effect of insulin on heat-induced testicular impairment has not been investigated. Thus, it is hypothesized that insulin might modulate testicular activity in a heat-stressed model. Experimental mice were separated into 4 groups; the first group was the normal control (CN), and the second group was subjected to heat stress (HS) by submerging the lower body part in a thermostatically controlled water bath maintained at 43°C for 15 min. The third and fourth groups were treated with a single dose of intra-testicular insulin (0.6 IU/mice) before and after heat stress. Animal tissue samples were collected after 14 days of heat treatment. Insulin treatment did not improve the sperm parameters; however, both insulin pre and post-treatment improved the markers of spermatogenesis such as Johnsen score, germinal epithelium height and the number of stages VII/VIII. The histoarchitecture of testis also showed amelioration from heat-induced pathogenesis in the insulin-treated groups. Insulin treatment has also increased the proliferation of germ cells (increased PCNA and GCN), survival (Bcl2), and decreased apoptosis (active caspase-3). Furthermore, insulin treatment decreased MDA levels, without pronounced effects on the activities of antioxidant enzymes. Heat stress also decreased the circulating testosterone and oestrogen levels, and insulin treatment significantly increased oestrogen levels only. Although testosterone showed an increasing trend, it was insignificant. The expression of aromatase, AR, ER-α, and ER-ß was down regulated by heat-stress and insulin treatment up regulated these markers. In conclusion, our results showed the amelioration of heat-induced testicular impairment by pre and post-intra-testicular insulin treatments. Insulin-associated improvements in the pre-and post-treatment groups suggested a preventive mechanism of insulin against heat stress in the testis.


Asunto(s)
Trastornos de Estrés por Calor , Insulinas , Masculino , Ratones , Animales , Testículo , Semen , Espermatogénesis , Trastornos de Estrés por Calor/metabolismo , Testosterona/metabolismo , Apoptosis , Respuesta al Choque Térmico , Estrógenos/metabolismo , Insulinas/metabolismo , Insulinas/farmacología
8.
Cytokine ; 144: 155554, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33962842

RESUMEN

Type 1 diabetes mellitus (T1DM) is a metabolic disorder with severe hyperglycemia, one of the complications of which is testicular dysfunctions, androgen deficiency and decreased male fertility. In the diabetic testes, the expression and signaling pathways of leptin and a number of other adipokines are significantly changed. However, there is no information on the localization and expression of adipokine, apelin and its receptor (APJ) in the diabetic testes, although there is information on the involvement of apelin in the regulation of reproductive functions. The aim of this study was to investigate the expression and localization of apelin and APJ in the testes of mice with streptozotocin-induced T1DM and to estimate the effects of agonist (apelin-13) and antagonist (ML221) of APJ on the testosterone production by diabetic testis explants in the in vitro conditions. We first detected the expression of apelin and its receptor in the mouse testes, and showed an increased intratesticular expression of apelin and APJ along with the reduced testosterone secretion in T1DM. Using imunohistochemical approach, we showed that apelin and APJ are localized in the Leydig and germ cells, and in diabetes, the amount of these proteins was significantly higher than in the control mice. The diabetic testes had a decrease in germ cell proliferation (the reduced PCNA and GCNA levels) and an increase in apoptosis (the increased active caspase-3 and decreased BCL2 levels). These results suggest an involvement of apelin and APJ in T1DM-induced testicular pathogenesis. Treatment of the cultured testis explants with ML221 significantly increased the testosterone secretion, whereas apelin-13 was ineffective. Thus, hyperapelinemia in the testes can significantly contribute to testicular pathogenesis in T1DM, and pharmacological inhibition of apelin receptors can improve testicular steroidogenesis.


Asunto(s)
Apelina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Esteroides/metabolismo , Testículo/metabolismo , Adipoquinas/metabolismo , Animales , Receptores de Apelina/metabolismo , Apoptosis/fisiología , Proliferación Celular/fisiología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/metabolismo , Células Germinativas/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Nitrobenzoatos/farmacología , Piranos/farmacología , Transducción de Señal/fisiología , Estreptozocina/farmacología , Testosterona/metabolismo
9.
Mol Reprod Dev ; 87(5): 620-629, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32249489

RESUMEN

Diabetes mellitus impairs testicular activity and leads to infertility. Leptin is one of the endogenous regulators of the male reproductive functions, but the role of leptin and its receptor (LEPR/Ob-R) in the control of testosterone production and testicular proliferation has not been investigated so far, especially in the Type 1 diabetes mellitus (DM1). Metformin is an anti-hyperglycemic drug which is beneficial for treating the both DM2 and DM1. The aim of this work was to study the possible role of leptin and Ob-R in the regulation of steroidogenesis and proliferation in the testes of mice with streptozotocin-induced DM1 (75 mg/kg/day, 4 days) and to estimate the restoring effect of metformin treatment (500 mg/kg, 2 weeks) on the diabetic testes. In the diabetic testes, the plasma and intratesticular leptin levels and plasma testosterone levels were reduced and completely restored by metformin treatment. Metformin also restored the expression of the steroidogenic transport protein steroidogenic acute regulatory protein reduced in DM1. In the diabetic testes, the expression of Ob-R was downregulated and the immunolocalization of Ob-R showed weak staining in the Leydig cells, the primary spermatocytes and the round spermatids. The germ cell proliferation was also reduced in DM1, as noticed with proliferating cell nuclear antigen (PCNA) expression. Metformin increased the Ob-R expression and immunostaining in the different cell types and improved the PCNA expression. Thus, DM1 impairs the testicular steroidogenesis and proliferation by inhibiting the leptin signaling, causing a decrease in leptin levels and Ob-R expression in the testes of diabetic mice, while metformin improves the leptin signaling and restores testosterone production and testicular proliferation.


Asunto(s)
Diabetes Mellitus Experimental , Leptina/metabolismo , Metformina/farmacología , Receptores de Leptina , Testículo/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Expresión Génica/efectos de los fármacos , Leptina/sangre , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/fisiología , Masculino , Metformina/uso terapéutico , Ratones , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Estreptozocina , Testículo/citología , Testículo/metabolismo , Testosterona/sangre , Distribución Tisular/efectos de los fármacos
10.
Andrologia ; 52(9): e13713, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32557748

RESUMEN

The functions of mammalian testis are temperature-sensitive. There are various testicular factors, which express in response to heat as a mechanism of defence. PGC-1α and HSP70 have poetical role in the protection from oxidative stress in various tissues, including testis. The expression of PGC-1α and HSP70 has been shown in the testis, and it has also been documented that heat modulates the expression of PGC-1α and HSP70. However, heat-dependent changes in the localisation and expression of PGC-1α have not been investigated so far. Thus, we studied the expression and localisation pattern of PGC-1α in the testis of heat-treated mice along with marker of proliferation (PCNA, GCNA), serum testosterone levels, MDA levels and HSP70. The results showed a significant increase in PGC-1α and HSP70 and MDA levels in the testis of heat-treated mice along with a decrease in PCNA, GCNA and serum testosterone levels. The immunolocalisation study showed intense immunostaining of PGC-1α in the Leydig cell and germ cells of the heat-treated testis, with pronounced damaged in the histoarchitecture. The results showed that increase expression of PGC-1α in germ cells and Leydig cells of testis could be a counter mechanism to cope up with oxidative stress in coordination with HSP70.


Asunto(s)
Calor , Testículo , Animales , Proteínas HSP70 de Choque Térmico/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Testículo/metabolismo
11.
Mol Reprod Dev ; 86(12): 1951-1962, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31566824

RESUMEN

The present study aimed to investigate the effects of vitamin D3 in the epididymal sperm cells of D-gal-induced aged rats. It is well known that during aging sperm quality and quantity declines and leads to age-related infertility problems in males. The results of the present study showed that there were elevated levels of oxidative stress and poor DNA integrity of sperm of aged rats. The expression of BCL2 also showed a significant decline in the sperm of aged rats, however, the expression of BAX and active caspase-3 did not show significant change compared with the control group. The treatment of vitamin D3 at lower doses to aged rats showed increased expression of BAX and active caspase-3 in the sperm, this finding suggests that increased apoptosis may be responsible for removal of poor quality sperm during aging. Vitamin D3 treatment at both doses showed improvement in the oxidative stress and DNA integrity in the sperm of aged rats. We also investigated the expression of AGER, visfatin, and HSPA1A in the epididymal sperm. It has been found that expression of AGER, visfatin, and HSPA1A increased in the sperm aged rats and vitamin D3 treatments at both doses decreased its expression. Thus, it might be suggested that during aging vitamin D3 treatment would be important for managing the sperm quality by regulating the apoptosis, antioxidant system and DNA integrity via modulation of visfatin and HSPA1A.


Asunto(s)
Envejecimiento/metabolismo , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Colecalciferol/farmacología , Espermatozoides/metabolismo , Animales , Epidídimo/citología , Epidídimo/metabolismo , Masculino , Ratas , Ratas Wistar , Espermatozoides/citología
12.
Reprod Fertil Dev ; 29(6): 1057-1063, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27064025

RESUMEN

The protective effects of carnitine have been attributed to inhibition of apoptosis, alleviating oxidative stress and DNA repair mechanism by decreasing oxidative radicles. Carnitine also increases mitochondrial biogenesis via peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). The role of carnitine in testicular PGC1α expression has not been documented. We hypothesised that the effects of carnitine as an antioxidant, inhibitor of apoptosis and controller of steroidogenesis in mouse testis may involve PGC1α as a regulator. The present study was designed to evaluate the localisation of PGC1α and the effects of carnitine treatment on the expression of PGC1α, Bcl2 and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) in mouse testis and serum testosterone concentrations. PGC1α was primarily immunolocalised to the Leydig cells and primary spermatocytes. Western blot analysis showed that carnitine (50mgkg-1 and 100mgkg-1 for 7 days) significantly increased PGC1α and Bcl2 expression in the testis in a dose-dependent manner. In addition, carnitine treatment significantly increased antioxidant enzyme (CAT, SOD and GPx) levels. The carnitine-induced changes in PGC1α in the testis were significantly correlated with changes in serum testosterone concentrations, as well as with changes in Bcl2 expression and antioxidant enzyme activity in the testis, as evaluated by electrophoresis. Therefore, the results of the present study suggest that carnitine treatment of mice increases PGC1α levels in the testis, which may, in turn, regulate steroidogenesis by increasing expression of Bcl2 and antioxidant enzymes.


Asunto(s)
Antioxidantes/uso terapéutico , Carnitina/uso terapéutico , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Infertilidad Masculina/prevención & control , Proteínas Proto-Oncogénicas c-bcl-2/agonistas , Testículo/efectos de los fármacos , Factores de Transcripción/agonistas , Animales , Antioxidantes/administración & dosificación , Apoptosis/efectos de los fármacos , Carnitina/administración & dosificación , Relación Dosis-Respuesta a Droga , Inmunohistoquímica , Infertilidad Masculina/sangre , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Inyecciones Intraperitoneales , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/patología , Masculino , Ratones Endogámicos , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Distribución Aleatoria , Espermatocitos/efectos de los fármacos , Espermatocitos/metabolismo , Espermatocitos/patología , Testículo/metabolismo , Testículo/patología , Testosterona/agonistas , Testosterona/sangre , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Steroid Biochem Mol Biol ; 238: 106463, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38246202

RESUMEN

The expression of adipokines is well-known in the ovary and uterus. Recently we have shown that apelin and its receptor, APJ are developmentally regulated in the ovary and uterus of mice with elevation at postnatal day 14 (PND14). However, its role in the ovary and uterus of PND14 has not been investigated. Thus, we aimed to unravel the role of the apelin system (by APJ antagonist, ML221) on ovarian steroid secretion, proliferation, and apoptosis along with its role in uterine apoptosis in PND14 mice by in vitro approaches. The treatment of ML221 decreased estrogen, testosterone, and androstenedione secretion while increasing the progesterone secretion from the infantile ovary. These results suggest that apelin signaling would be important for ovarian estrogen synthesis in infantile mice (PND14). The abundance of 3ß-HSD, 17ß-HSD, aromatase, and active caspase3 increased in the infantile ovary after ML221 treatment. The expression of ERs and BCL2 were also down-regulated by ML221 treatment. The decreased BCL2 and increased active caspase3 by ML221 suggest the suppressive role of apelin on ovarian apoptosis. The APJ antagonist treatment also down-regulated the ER expression in the uterus along with increased active caspase3 and decreased BCL2 expression. In conclusion, apelin signaling inhibits the ovarian and uterine apoptosis via estrogen signaling in the ovary and uterus.


Asunto(s)
Nitrobenzoatos , Ovario , Piranos , Útero , Animales , Femenino , Ratones , Apelina/metabolismo , Apoptosis , Estrógenos/metabolismo , Ovario/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Útero/metabolismo
14.
Endocrine ; 84(3): 1216-1228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38273138

RESUMEN

BACKGROUND: It is now well known that visfatin is expressed in the testis and ovary of various animals. Visfatin is known to regulate gonadal functions such as steroidogenesis, proliferation, and apoptosis in the ovary and testis of mice. Recently, we have shown that visfatin has an inhibitory role in the infantile mice testis. It has also been shown that visfatin stimulates testicular steroidogenesis in adult rats. However, the role of visfatin during puberty has not been investigated in relation to the above-mentioned process. OBJECTIVE: The objective of the present study was to examine the effect of visfatin inhibition by FK866 from PND25 to PND35 (pre-pubertal to early pubertal) in male Swiss albino mice on steroidogenesis, proliferation, and apoptosis. METHODS: Sixteen mice (25 days old) were divided into two groups, one group was given normal saline and the other group was administered with an inhibitor of visfatin (FK866) at the dose of 1.5 mg/kg by intraperitoneal injection for 10 days. Histopathological and immunohistochemical analysis, western blot analysis and hormonal assay were done. RESULTS: Visfatin inhibition resulted in increased estrogen secretion, body weight, seminiferous tubule diameter, germinal epithelium height, and proliferation along with increased expression of BCl2, casapse3, ERs and aromatase expression in the mice testis. Visfatin inhibition down-regulated the testicular visfatin expression and also decreased abundance in the adipose tissues. CONCLUSION: In conclusion, decreased AR expression and increased ERs expression by FK866, suggest that visfatin might have a stimulatory effect on AR signaling than ERs in the early pubertal stage of mice.


Asunto(s)
Acrilamidas , Nicotinamida Fosforribosiltransferasa , Piperidinas , Receptores Androgénicos , Maduración Sexual , Testículo , Animales , Masculino , Nicotinamida Fosforribosiltransferasa/metabolismo , Ratones , Testículo/efectos de los fármacos , Testículo/metabolismo , Maduración Sexual/efectos de los fármacos , Maduración Sexual/fisiología , Receptores Androgénicos/metabolismo , Acrilamidas/farmacología , Piperidinas/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Testosterona/sangre , Testosterona/farmacología , Aromatasa/metabolismo
15.
Tissue Cell ; 88: 102374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598873

RESUMEN

The adipokines, visfatin, chemerin, and its receptor are expressed in the testis. It has also been shown that heat-stress alters the secretion and expression of other adipokines. Testicular heat-stress is now well known to cause the impairment in the testis. It has also been documented that heat-stress changes the expression of genes and proteins in the testis. To the best of our knowledge, the expression and localization of visfatin chemerin and its receptor have not been investigated in the heat-stressed testis. Therefore, the present study has investigated the expression and localization of these proteins in the heat-stressed testis. The expression of visfatin and chemerin and receptor exhibits a differential repossess against the heat stress. Visfatin expression was up-regulated while chemerin and chemerin receptor was down-regulated in the heat-stressed testis as shown by western blot analysis. The immunolocalization of visfatin and chemerin showed increased abundance in the seminiferous tubules of heat-stressed mice testis. Furthermore, abundance of visfatin, chemerin, and its receptor showed a decrease in abundance in the Leydig cells of heat-stressed testis. The decreased abundance of these proteins in the Leydig cells coincides with decreased 3ß-HSD immunostaining along with decreased testosterone levels. These results suggest that heat-stress might decrease testosterone secretion by modulating visfatin and chemerin in the Leydig cells. The increased abundance of visfatin and chemerin in the primary spermatocytes, round spermatid, and multinucleated germ cells also coincides with increased immunostaining of active caspase-3. Moreover, expression of Bcl-2 was down-regulated, and expression of active caspase-3 and HSP70 were up-regulated along with increased oxidative stress in the heat-stressed testis, suggesting stimulated apoptosis. In conclusion, our results showed that visfatin, chemerin, and its receptor are differentially expressed in the testis under heat-stress and within the testis also it might differentially regulate testosterone biosynthesis in the Leydig cells and apoptosis in the seminiferous tubules.


Asunto(s)
Quimiocinas , Respuesta al Choque Térmico , Nicotinamida Fosforribosiltransferasa , Receptores de Quimiocina , Testículo , Masculino , Animales , Ratones , Quimiocinas/metabolismo , Testículo/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Células Intersticiales del Testículo/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Caspasa 3/metabolismo
16.
Reprod Biol ; 24(3): 100918, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924877

RESUMEN

Apelin and APJ have been shown to regulate female reproductive functions. However, its uterine expression during the oestrous cycle and its regulation by ovarian steroids, along with gonadotropin regulation in the ovary, has not been investigated. This study aimed to analyze the steroid-dependent uterine expression of apelin/APJ in the uterus along with the oestrous cycle. Furthermore, it also aimed to investigate gonadotropin-dependent ovarian expression of apelin and APJ. To investigate the uterine expression of apelin and APJ during estrous cycle in mice, uterus at different estrous stage were collected. To explore the ovarian steroids dependent expression of apelin system in the uterus, ovariectomized mice were treated with only estrogen at dose of 30 ng/g, only progesterone at dose of 150 µg/g and combined doses. To study the effect of gonadotropin on ovarian expression of apelin system, immature mice were injected with 2.5 IU of pregnant mare serum gonadotropin (PMSG) alone and both PMSG plus 2.5 IU of chorionic gonadotropin (hCG). Apelin and APJ protein expression are modulated by estrous phases in the uterus. The uterine apelin and APJ expression are up-regulated by estrogen and down-regulated by progesterone. The expression and localization of APJ showed increased abundance in the follicles of PMSG treated mice, however, the PMSG plus HCG treatment showed formation of corpus luteum with increased abundance of APJ and progesterone secretion. The expression of apelin and APJ are regulated by pituitary gonadotropin in the ovary and uterine apelin system by ovarian steroid hormone.

17.
3 Biotech ; 14(7): 181, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38911474

RESUMEN

Di-(2-ethylhexyl) phthalic acid (DEHP) pollutes the environment, and posing a significant risk to human and animal health. Consequently, a successful preventative strategy against DEHP-induced liver toxicity needs to be investigated. Morin hydrate (MH), a flavanol compound, possesses toxic preventive attributes against various environmental pollutants. However, the effects of MH have not been investigated against DEHP-induced liver toxicity. Female Swiss albino mice were divided into four groups: control, DEHP (orally administered with 500 mg/kg, DEHP plus MH 10 mg/kg, and DEHP plus MH 100 mg/kg for 14 days. The results showed that the MH treatment ameliorated the DEHP-induced liver dysfunctions by decreasing the alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin, liver histoarchitecture, fibrosis, and markers of oxidative stress. Furthermore, DEHP increased apoptosis, increased active caspase 3 and decreased B cell lymphoma-2 (Bcl-2) expression. However, the MH treatment showed a differential effect on these proteins; a lower dose increased, and a higher dose decreased the expression. Thus, a lower dose of MH could be involved in the disposal of damaged hepatocytes. Expression of Estrogen receptors alpha (ERα) also showed a similar trend with active caspase 3. Furthermore, the expression of Tumor necrosis factor alpha (TNF-α) and Nuclear factor-κß (NF-κß) were up-regulated by DEHP treatment, and MH treatment down-regulated the expression of these two inflammatory markers. Since this down-regulation of TNF-α and NF-κß coincides with improved liver functions against DEHP-induced toxicity, it can be concluded that MH-mediated liver function involves the singling of TNF-α and NF-κß.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38973535

RESUMEN

Hyperandrogenemia is associated with polycystic ovarian syndrome (PCOS) and imbalances in the pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels. Apelin and its receptor, APJ (class A, rhodopsin-like G- protein-coupled receptor), belongs to adipokines, and its expression has been shown in the pituitary. It is also well known that, hyperandrogenism and PCOS have deregulation of different adipokines. Whether hyperandrogenism also deregulates the apelin system in the pituitary has yet to be investigated. Thus, we have investigated the expression and localization of apelin and its receptor, APJ, in the letrozole-induced hyperandrogenised pituitary of female mice. Our results showed that the apelin, APJ and androgen receptor (AR) expression were upregulated in the anterior pituitary. Furthermore, the immunostaining of LH exhibited increased abundance than FSH. The circulating LH was also found to be elevated compared to FSH levels. The increased LH synthesis and secretion coincides with elevated apelin system in the pituitary of hyperandrogenised mice. Recently, a direct role of apelin has also been reported in the female pituitary, where apelin inhibits LH secretion. Thus, apelin could be one of the factors for deregulated gonadotropin secretion in hyperandrogenised conditions. However, more research is needed to fully understand the complex interactions between apelin and androgen regarding gonadotropin secretion in hyperandrogenised conditions.

19.
J Steroid Biochem Mol Biol ; : 106576, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986958

RESUMEN

Heat stress has been shown to have a detrimental impact on testicular activity and spermatogenesis. Ellagic acid is a plant-derived organic compound that has a variety of biological functions. Thus, it is believed that ellagic acid may improve heat-stressed testicular dysfunction. There has been no research on the impact of ellagic acid on heat-stressed testicular dysfunction. The mice were divided into 4 groups. The first group was the normal control group (CN), and the second received heat stress (HS) by submerging the lower body for 15minutes in a water bath with a thermostatically controlled temperature kept at 43°C (HS), and the third and fourth groups were subjected to heat-stress similar to group two and given two different dosages of ellagic acid (5mg/kg (EH5) and 50mg/kg (EH50) for 14 days. Ellagic acid at a dose of 50mg/kg improved the level of circulating testosterone (increased 3ßHSD) and decreases the oxidative stress. The testicular and epididymal architecture along with sperm parameters also showed improvement. Ellagic acid treatment significantly increases the germ cell proliferation (GCNA, BrdU staining) and Bcl2 expression and decreases active caspase 3 expression. Heat stress downregulated the expression of AR, ER-α and ER-ß, and treatment with ellagic acid increased the expression of ER-α and ER-ß markers in the 50mg/kg treatment group. Thus, our finding suggests that ellagic acid ameliorates heat-induced testicular impairment through modulating testosterone synthesis, germ cell proliferation, and oxidative stress. These effects could be manifested by regulating androgen and estrogen receptors. However, the two doses showed differential effects of some parameters, which require further investigation.

20.
Discov Med ; 36(180): 22-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273744

RESUMEN

Idiopathic pulmonary fibrosis is a progressive and incurable lung disease characterized by collagen deposition, alveolar inflammation, fibroblast proliferation, and the destruction of lung tissue structures. It is a rare yet severe condition with a high mortality rate, typically leading to death within 3-5 years of diagnosis. The clinical presentation of idiopathic pulmonary fibrosis (IPF) involves a gradual and substantial loss of lung function, ultimately resulting in respiratory failure. Despite more than half a century of intensive research, the origin of IPF remains a mystery. Despite its unknown etiology, several genetic and non-genetic factors have been linked to IPF. Recent significant advancements have been made in the field of IPF diagnosis and treatment. Two oral small-molecule drugs, pirfenidone and nintedanib, have recently gained approval for the treatment of IPF. Pirfenidone exhibits antifibrotic, antioxidant, and anti-inflammatory properties, while nintedanib is a tyrosine kinase inhibitor with selectivity for vascular endothelial growth factor (VEGF) receptors, prostaglandin F (PGF) receptors, and fibroblast growth factor (FGF) receptors. Both of these compounds are capable of slowing down the progression of the disease with an acceptable safety profile. This review provides a brief introduction, historical background, epidemiological insights, and an exploration of various environmental risk factors that may influence the lung microenvironment and contribute to the advancement of IPF. The review also delves into the diagnosis, signaling pathways, and ongoing clinical trials worldwide. A thorough review of the literature was conducted using PubMed and Google Scholar to gather information on various aspects of IPF. Numerous potential drugs are currently under investigation in clinical trials, and the completion of this process is crucial to the ultimate goal of finding a cure for IPF patients. The investigation of the role of genes, surfactant proteins, infectious agents, biomarkers, and epigenetic changes holds the promise of offering earlier and more accurate understanding and diagnosis of IPF. This information could be instrumental in the development of new therapeutic approaches for treating IPF and is expected to be of great interest to researchers.


Asunto(s)
Fibrosis Pulmonar Idiopática , Factor A de Crecimiento Endotelial Vascular , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/metabolismo , Inflamación/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridonas/uso terapéutico , Piridonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA