Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 287(27): 22781-8, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22582390

RESUMEN

Homeostatic scaling allows neurons to alter synaptic transmission to compensate for changes in network activity. Here, we show that suppression of network activity with tetrodotoxin, which increases surface expression of AMPA receptors (AMPARs), dramatically reduces levels of the deSUMOylating (where SUMO is small ubiquitin-like modifier) enzyme SENP1, leading to a consequent increase in protein SUMOylation. Overexpression of the catalytic domain of SENP1 prevents this scaling effect, and we identify Arc as a SUMO substrate involved in the tetrodotoxin-induced increase in AMPAR surface expression. Thus, protein SUMOylation plays an important and previously unsuspected role in synaptic trafficking of AMPARs that underlies homeostatic scaling.


Asunto(s)
Endopeptidasas/metabolismo , Hipocampo/fisiología , Homeostasis/fisiología , Neuronas/fisiología , Sumoilación/fisiología , Sinapsis/metabolismo , Animales , Cisteína Endopeptidasas , Proteínas del Citoesqueleto/metabolismo , Endopeptidasas/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Células HEK293 , Hipocampo/citología , Humanos , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Técnicas de Cultivo de Órganos , Transporte de Proteínas/fisiología , Ratas , Receptores AMPA/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Sumoilación/efectos de los fármacos , Tetrodotoxina/farmacología
2.
Sci Rep ; 7: 43811, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262828

RESUMEN

The GTPase dynamin-related protein 1 (Drp1) is essential for physiological and pathophysiological mitochondrial fission. DeSUMOylation of Drp1 by the enzyme SENP3 promotes cell death during reperfusion after ischaemia by enhancing Drp1 partitioning to the mitochondrial outer membrane (MOM), which causes cytochrome c release and apoptosis. However, how deSUMOylation recruits Drp1 to the MOM is unknown. Here we show that deSUMOylation selectively promotes Drp1 binding to the MOM resident adaptor protein mitochondrial fission factor (Mff). Consistent with this, preventing Drp1 SUMOylation by mutating the SUMO acceptor sites enhances binding to Mff. Conversely, increasing Drp1 SUMOylation by knocking down SENP3 reduces both Drp1 binding to Mff and stress-induced cytochrome c release. Directly tethering Drp1 to the MOM bypasses the need for Mff to evoke cytochrome c release, and occludes the effect of SENP3 overexpression. Thus, Drp1 deSUMOylation promotes cell death by enhancing Mff-mediated mitochondrial recruitment. These data provide a mechanistic explanation for how the SUMOylation status of Drp1 acts as a key switch in cell death/survival decisions following extreme cell stress.


Asunto(s)
Apoptosis , Cisteína Endopeptidasas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Cisteína Endopeptidasas/genética , Citocromos c/metabolismo , Dinaminas , GTP Fosfohidrolasas/genética , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Unión Proteica , Interferencia de ARN , Sumoilación
3.
Neuromolecular Med ; 15(4): 692-706, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23934328

RESUMEN

Timely and efficient information transfer at synapses is fundamental to brain function. Synapses are highly dynamic structures that exhibit long-lasting activity-dependent alterations to their structure and transmission efficiency, a phenomenon termed synaptic plasticity. These changes, which occur through alterations in presynaptic release or in the trafficking of postsynaptic receptor proteins, underpin the formation and stabilisation of neural circuits during brain development, and encode, process and store information essential for learning, memory and cognition. In recent years, it has emerged that the ubiquitin-like posttranslational modification SUMOylation is an important mediator of several aspects of neuronal and synaptic function. Through orchestrating synapse formation, presynaptic release and the trafficking of postsynaptic receptor proteins during forms of synaptic plasticity such as long-term potentiation, long-term depression and homeostatic scaling, SUMOylation is being increasingly appreciated to play a central role in neurotransmission. In this review, we outline key discoveries in this relatively new field, provide an update on recent progress regarding the targets and consequences of protein SUMOylation in synaptic function and plasticity, and highlight key outstanding questions regarding the roles of protein SUMOylation in the brain.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal , Transporte de Proteínas/fisiología , Receptores de Neurotransmisores/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Transmisión Sináptica/fisiología , Animales , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta , Guanilato-Quinasas/fisiología , Humanos , Factores de Transcripción MEF2/fisiología , Neurogénesis , Neuronas/metabolismo , Fosfohidrolasa PTEN/fisiología , Canales de Potasio/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Ácido Kaínico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Presinapticos/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA