Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 80(19): 7430-6, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18771234

RESUMEN

We have applied multiple-time-point reaction mapping to generate high-dynamic-range quantitative data from PCR multiplexes. The approach measures, then compensates, numerous PCR slope nonidealities across the multiplex without prejudice. A multilane microelectophoresis device with a novel scanning detector that reports redundantly over more than six decades in signal strength was used to collect data with multiple readings for each amplification point and with double internal calibration (lane standards and gene standards). We investigated scaling properties and sensitivity for readout of 12plex PCR reactions. The sensitive detection, stemming from confocal optics, allowed reduction of the PCR cycle number by approximately five cycles compared to commercial fluorometric readout. This increased sensitivity appears to allow quantitative PCR over a dynamic range of >9 log2 abundance ratio in multiplex reactions exceeding 20plexes. We argue that the combination of mapping, multiplexing, and an internal standard, improves the per-well efficiency of quantitative expression analysis by a factor of 50-100 relative to fluorometric qPCR readout. Therefore, the approach is attractive for analysis of large gene networks at reduced cost.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Reacción en Cadena de la Polimerasa/métodos , Candida albicans/genética , Candida albicans/aislamiento & purificación , Electroforesis/instrumentación , Electroforesis/métodos , Fluorometría/instrumentación , Fluorometría/métodos , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Neutrófilos/microbiología , Reacción en Cadena de la Polimerasa/instrumentación , ARN de Hongos/análisis , Reproducibilidad de los Resultados
2.
Mol Cell Biol ; 24(16): 6967-79, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15282298

RESUMEN

Phosphorylation is the main mode by which signals are transmitted to key regulators of developmental pathways. The glycogen synthase kinase 3 family plays pivotal roles in the development and well-being of all eukaryotic organisms. Similarly, the budding yeast homolog Rim11 is essential for the exit of diploid cells from the cell cycle and for entry into the meiotic developmental pathway. In this report we show that in vivo, in cells grown in a medium promoting vegetative growth with acetate as the sole carbon source (SA medium), Rim11 phosphorylates Ime1, the master transcriptional activator required for entry into the meiotic cycle and for the transcription of early meiosis-specific genes. We demonstrate that in the presence of glucose, the kinase activity of Rim11 is inhibited. This inhibition could be due to phosphorylation on Ser-5, Ser-8, and/or Ser-12 because in the rim11S5AS8AS12A mutant, Ime1 is incorrectly phosphorylated in the presence of glucose and cells undergo sporulation. We further show that this nutrient signal is transmitted to Rim11 and consequently to Ime1 by the cyclic AMP/protein kinase A signal transduction pathway. Ime1 is phosphorylated in SA medium on at least two residues, Tyr-359 and Ser-302 and/or Ser-306. Ser-302 and Ser-306 are part of a consensus site for the mammalian homolog of Rim11, glycogen synthase kinase 3-beta. Phosphorylation on Tyr-359 but not Ser-302 or Ser-306 is essential for the transcription of early meiosis-specific genes and sporulation. We show that Tyr-359 is phosphorylated by Rim11.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Meiosis/fisiología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Sistemas de Mensajero Secundario/fisiología , Factores de Transcripción/metabolismo , Acetatos/metabolismo , Medios de Cultivo/química , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Péptidos y Proteínas de Señalización Intracelular , Nitrógeno/metabolismo , Proteínas Nucleares/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Tirosina/metabolismo
3.
Int Rev Cytol ; 224: 111-71, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12722950

RESUMEN

Initiation of meiosis in Saccharomyces cerevisiae is regulated by mating type and nutritional conditions that restrict meiosis to diploid cells grown under starvation conditions. Specifically, meiosis occurs in MATa/MATalpha cells shifted to nitrogen depletion media in the absence of glucose and the presence of a nonfermentable carbon source. These conditions lead to the expression and activation of Ime 1, the master regulator of meiosis. IME1 encodes a transcriptional activator recruited to promoters of early meiosis-specific genes by association with the DNA-binding protein, Ume6. Under vegetative growth conditions these genes are silent due to recruitment of the Sin3/Rpd3 histone deacetylase and Isw2 chromatin remodeling complexes by Ume6. Transcription of these meiotic genes occurs following histone acetylation by Gcn5. Expression of the early genes promote entry into the meiotic cycle, as they include genes required for premeiotic DNA synthesis, synapsis of homologous chromosomes, and meiotic recombination. Two of the early meiosis specific genes, a transcriptional activator, Ndt80, and a CDK2 homologue, Ime2, are required for the transcription of middle meiosis-specific genes that are involved with nuclear division and spore formation. Spore maturation depends on late genes whose expression is indirectly dependent on Ime1, Ime2, and Ndt80. Finally, phosphorylation of Imel by Ime2 leads to its degradation, and consequently to shutting down of the meiotic transcriptional cascade. This review is focusing on the regulation of gene expression governing initiation and progression through meiosis.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Genes Reguladores/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Transcripción Genética/genética , Retroalimentación Fisiológica/genética , Proteínas Nucleares/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Factores de Transcripción/genética
4.
Cell Host Microbe ; 2(1): 55-67, 2007 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-18005717

RESUMEN

Innate immunity depends upon recognition of surface features common to broad groups of pathogens. The glucose polymer beta-glucan has been implicated in fungal immune recognition. Fungal walls have two kinds of beta-glucan: beta-1,3-glucan and beta-1,6-glucan. Predominance of beta-1,3-glucan has led to the presumption that it is the key immunological determinant for neutrophils. Examining various beta-glucans for their ability to stimulate human neutrophils, we find that the minor cell wall component beta-1,6-glucan mediates neutrophil activity more efficiently than beta-1,3-glucan, as measured by engulfment, production of reactive oxygen species, and expression of heat shock proteins. Neutrophils rapidly ingest beads coated with beta-1,6-glucan while ignoring those coated with beta-1,3-glucan. Complement factors C3b/C3d are deposited on beta-1,6-glucan more readily than on beta-1,3-glucan. Beta-1,6-glucan is also important for efficient engulfment of the human pathogen Candida albicans. These unique stimulatory effects offer potential for directed stimulation of neutrophils in a therapeutic context.


Asunto(s)
Candida/fisiología , Pared Celular/fisiología , Neutrófilos/fisiología , Fagocitosis/fisiología , Regulación de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiología , Humanos , Neutrófilos/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , beta-Glucanos/farmacología
5.
Curr Drug Targets ; 7(11): 1455-65, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17100585

RESUMEN

Yeast cells carry four homologs of GSK-3beta, RIM11, MCK1, MRK1 and YGK3. The significant homologs are RIM11 and MCK1 that presumably arose from a recent genome duplication followed by a rapid divergence. Accordingly, these homologs phosphorylate specific substrates. Rim11 is essential for entry into meiosis, whereas Mck1 is essential for growth at elevated and low temperatures. Both kinases transmit nutrient signals, but Mck1 transmits additional signals including stress signals such as, temperature, osmotic shock and Ca(2+). Consequently, Mck1 plays a role in multiple functions, including cell wall integrity, meiosis and centromere function. The other two homologs, MRK1 and YGK3 that belong to the RIM11 and MCK1 phylogenetic trees, respectively, show no distinct phenotype. These paralogs posses redundant roles, though less important, with Rim11 and Mck1 functions. This review summarizes the cellular roles of these kinases, their mode of regulation, and the signals that they transmit.


Asunto(s)
Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Glucógeno Sintasa Quinasa 3 beta , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/fisiología
6.
Proc Natl Acad Sci U S A ; 100(19): 11007-12, 2003 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-12958213

RESUMEN

The transcriptional profiles of yeast cells that have been phagocytosed by either human neutrophils or monocytes were compared by using whole genome arrays. After phagocytosis by neutrophils, both Saccharomyces cerevisiae and Candida albicans respond by inducing genes of the methionine and arginine pathways. Neither of these pathways is induced upon phagocytosis by monocytes. Both fungi show a similar induction of these pathways when transferred from amino acid-rich medium to amino acid-deficient medium. These data suggest that the internal phagosome of the neutrophil is an amino acid-deficient environment.


Asunto(s)
Aminoácidos/metabolismo , Candida albicans/metabolismo , Neutrófilos/inmunología , Fagocitosis , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Peróxido de Hidrógeno/farmacología , Neutrófilos/fisiología , Estrés Oxidativo , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA