Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Biol ; 21(2): e3001922, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780432

RESUMEN

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Asunto(s)
Bacteriófagos , Virus , Humanos , Metagenómica , Filogenia , Virus/genética
2.
J Gen Virol ; 104(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141106

RESUMEN

The taxonomy of viruses is developed and overseen by the International Committee on Taxonomy of Viruses (ICTV), which scrutinizes, approves and ratifies taxonomic proposals, and maintains a list of virus taxa with approved names (https://ictv.global). The ICTV has approximately 180 members who vote by simple majority. Taxon-specific Study Groups established by the ICTV have a combined membership of over 600 scientists from the wider virology community; they provide comprehensive expertise across the range of known viruses and are major contributors to the creation and evaluation of taxonomic proposals. Proposals can be submitted by anyone and will be considered by the ICTV irrespective of Study Group support. Thus, virus taxonomy is developed from within the virology community and realized by a democratic decision-making process. The ICTV upholds the distinction between a virus or replicating genetic element as a physical entity and the taxon category to which it is assigned. This is reflected by the nomenclature of the virus species taxon, which is now mandated by the ICTV to be in a binomial format (genus + species epithet) and is typographically distinct from the names of viruses. Classification of viruses below the rank of species (such as, genotypes or strains) is not within the remit of the ICTV. This article, authored by the ICTV Executive Committee, explains the principles of virus taxonomy and the organization, function, processes and resources of the ICTV, with the aim of encouraging greater understanding and interaction among the wider virology community.


Asunto(s)
Virus , Virus/clasificación , Clasificación
3.
Arch Virol ; 168(7): 175, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37296227

RESUMEN

This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2023. The entire ICTV membership was invited to vote on 174 taxonomic proposals that had been approved by the ICTV Executive Committee in July 2022, as well as a proposed revision of the ICTV Statutes. All proposals and the revised ICTV Statutes were approved by a majority of the voting membership. Of note, the ICTV continued the process of renaming existing species in accordance with the recently mandated binomial format and included gene transfer agents (GTAs) in the classification framework by classifying them as viriforms. In total, one class, seven orders, 31 families, 214 genera, and 858 species were created.


Asunto(s)
Virus , Humanos , Virus/genética , Miembro de Comité
4.
Cell Mol Biol Lett ; 28(1): 64, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550627

RESUMEN

BACKGROUND: In plants, RNase III Dicer-like proteins (DCLs) act as sensors of dsRNAs and process them into short 21- to 24-nucleotide (nt) (s)RNAs. Plant DCL4 is involved in the biogenesis of either functional endogenous or exogenous (i.e. viral) short interfering (si)RNAs, thus playing crucial antiviral roles. METHODS: In this study we expressed plant DCL4 in Saccharomyces cerevisiae, an RNAi-depleted organism, in which we could highlight the role of dicing as neither Argonautes nor RNA-dependent RNA polymerase is present. We have therefore tested the DCL4 functionality in processing exogenous dsRNA-like substrates, such as a replicase-assisted viral replicon defective-interfering RNA and RNA hairpin substrates, or endogenous antisense transcripts. RESULTS: DCL4 was shown to be functional in processing dsRNA-like molecules in vitro and in vivo into 21- and 22-nt sRNAs. Conversely, DCL4 did not efficiently process a replicase-assisted viral replicon in vivo, providing evidence that viral RNAs are not accessible to DCL4 in membranes associated in active replication. Worthy of note, in yeast cells expressing DCL4, 21- and 22-nt sRNAs are associated with endogenous loci. CONCLUSIONS: We provide new keys to interpret what was studied so far on antiviral DCL4 in the host system. The results all together confirm the role of sense/antisense RNA-based regulation of gene expression, expanding the sense/antisense atlas of S. cerevisiae. The results described herein show that S. cerevisiae can provide insights into the functionality of plant dicers and extend the S. cerevisiae tool to new biotechnological applications.


Asunto(s)
Proteínas de Plantas , Saccharomyces cerevisiae , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , ARN Bicatenario/genética , ARN Interferente Pequeño/metabolismo
5.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003356

RESUMEN

Positive-strand RNA virus replication invariably occurs in association with host cell membranes, which are induced to proliferate and rearrange to form vesicular structures where the virus replication complex is assembled. In particular, carnation Italian ringspot virus (CIRV) replication takes place on the mitochondrial outer membrane in plant and yeast cells. In this work, the model host Saccharomyces cerevisiae was used to investigate the effects of CIRV p36 expression on the mitochondrial structure and function through the determination of mitochondrial morphology, mitochondrial respiratory parameters, and respiratory chain complex activities in p36-expressing cells. CIRV p36 ectopic expression was shown to induce alterations in the mitochondrial network associated with a decrease in mitochondrial respiration and the activities of NADH-cyt c, succinate-cyt c (C II-III), and cytochrome c oxidase (C IV) complexes. Our results suggest that the decrease in respiratory complex activity could be due, at least in part, to alterations in mitochondrial dynamics. This yeast-based model will be a valuable tool for identifying molecular targets to develop new anti-viral strategies.


Asunto(s)
Dinámicas Mitocondriales , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transporte de Electrón , Membranas Mitocondriales/metabolismo
6.
J Gen Virol ; 103(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748479

RESUMEN

The International Committee on Taxonomy of Viruses recently adopted, and is gradually implementing, a binomial naming format for virus species. Although full Latinization of these names remains optional, a standardized nomenclature based on Latinized binomials has the advantage of comparability with all other biological taxonomies. As a language without living native speakers, Latin is more culturally neutral than many contemporary languages, and words built from Latin roots are already widely used in the language of science across the world. Conversion of established species names to Latinized binomials or creation of Latinized binomials de novo may seem daunting, but the rules for name creation are straightforward and can be implemented in a formulaic manner. Here, we describe approaches, strategies and steps for creating Latinized binomials for virus species without prior knowledge of Latin. We also discuss a novel approach to the automated generation of large batches of novel genus and species names. Importantly, conversion to a binomial format does not affect virus names, many of which are created from local languages.


Asunto(s)
Terminología como Asunto , Virus , Virus/clasificación
7.
Arch Virol ; 167(4): 1231-1234, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35043230

RESUMEN

Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.


Asunto(s)
Virus no Clasificados , Virus , Virus ADN , Virus/genética , Escritura
8.
Arch Virol ; 167(11): 2429-2440, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35999326

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2022. The entire ICTV was invited to vote on 174 taxonomic proposals approved by the ICTV Executive Committee at its annual meeting in July 2021. All proposals were ratified by an absolute majority of the ICTV members. Of note, the Study Groups have started to implement the new rule for uniform virus species naming that became effective in 2021 and mandates the binomial 'Genus_name species_epithet' format with or without Latinization. As a result of this ratification, the names of 6,481 virus species (more than 60 percent of all species names currently recognized by ICTV) now follow this format.


Asunto(s)
Virus , Miembro de Comité , Virus/genética
9.
Arch Virol ; 166(9): 2633-2648, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34231026

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2021. The entire ICTV was invited to vote on 290 taxonomic proposals approved by the ICTV Executive Committee at its meeting in October 2020, as well as on the proposed revision of the International Code of Virus Classification and Nomenclature (ICVCN). All proposals and the revision were ratified by an absolute majority of the ICTV members. Of note, ICTV mandated a uniform rule for virus species naming, which will follow the binomial 'genus-species' format with or without Latinized species epithets. The Study Groups are requested to convert all previously established species names to the new format. ICTV has also abolished the notion of a type species, i.e., a species chosen to serve as a name-bearing type of a virus genus. The remit of ICTV has been clarified through an official definition of 'virus' and several other types of mobile genetic elements. The ICVCN and ICTV Statutes have been amended to reflect these changes.


Asunto(s)
Clasificación/métodos , Filogenia , Virus no Clasificados/clasificación , Virus/clasificación , Cooperación Internacional , Viroides/clasificación , Virus/genética , Virus/aislamiento & purificación , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación
10.
Arch Virol ; 165(11): 2737-2748, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32816125

RESUMEN

This article reports the changes to virus classification and taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2020. The entire ICTV was invited to vote on 206 taxonomic proposals approved by the ICTV Executive Committee at its meeting in July 2019, as well as on the proposed revision of the ICTV Statutes. All proposals and the revision of the Statutes were approved by an absolute majority of the ICTV voting membership. Of note, ICTV has approved a proposal that extends the previously established realm Riboviria to encompass nearly all RNA viruses and reverse-transcribing viruses, and approved three separate proposals to establish three realms for viruses with DNA genomes.


Asunto(s)
Clasificación/métodos , Virus/clasificación , Terminología como Asunto , Virología/organización & administración , Virus/aislamiento & purificación
11.
Arch Virol ; 165(5): 1263-1264, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32065315

RESUMEN

The article Binomial nomenclature for virus species: a consultation, written by Stuart G. Siddell, Peter J. Walker, Elliot J. Lefkowitz, Arcady R. Mushegian, Bas E. Dutilh.

12.
Arch Virol ; 165(2): 519-525, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31797129

RESUMEN

The Executive Committee of the International Committee on Taxonomy of Viruses (ICTV) recognizes the need for a standardized nomenclature for virus species. This article sets out the case for establishing a binomial nomenclature and presents the advantages and disadvantages of different naming formats. The Executive Committee understands that adopting a binomial system would have major practical consequences, and invites comments from the virology community before making any decisions to change the existing nomenclature. The Executive Committee will take account of these comments in deciding whether to approve a standardized binomial system at its next meeting in October 2020. Note that this system would relate only to the formal names of virus species and not to the names of viruses.


Asunto(s)
Clasificación/métodos , Terminología como Asunto , Virus/clasificación
13.
Arch Virol ; 164(3): 943-946, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30663020

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in October 2018. Of note, the ICTV has approved, by an absolute majority, the creation of additional taxonomical ranks above those recognized previously. A total of 15 ranks (realm, subrealm, kingdom, subkingdom, phylum, subphylum, class, subclass, order, suborder, family, subfamily, genus, subgenus, and species) are now available to encompass the entire spectrum of virus diversity. Classification at ranks above genus is not obligatory but can be used by the authors of new taxonomic proposals when scientific justification is provided.


Asunto(s)
Virus/clasificación , Filogenia , Virología/organización & administración , Virus/genética , Virus/aislamiento & purificación
14.
Arch Virol ; 164(9): 2417-2429, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31187277

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in February 2019. Of note, in addition to seven new virus families, the ICTV has approved, by an absolute majority, the creation of the realm Riboviria, a likely monophyletic group encompassing all viruses with positive-strand, negative-strand and double-strand genomic RNA that use cognate RNA-directed RNA polymerases for replication.


Asunto(s)
Virología/organización & administración , Virus/clasificación , Miembro de Comité , ARN Viral/genética , Terminología como Asunto , Virología/normas , Virus/genética , Virus/aislamiento & purificación
15.
Arch Virol ; 163(9): 2601-2631, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29754305

RESUMEN

This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses in February 2018. A total of 451 species, 69 genera, 11 subfamilies, 9 families and one new order were added to the taxonomy. The current totals at each taxonomic level now stand at 9 orders, 131 families, 46 subfamilies, 803 genera and 4853 species. A change was made to the International Code of Virus Classification and Nomenclature to allow the use of the names of people in taxon names under appropriate circumstances. An updated Master Species List incorporating the approved changes was released in March 2018 ( https://talk.ictvonline.org/taxonomy/ ).


Asunto(s)
Virus/clasificación , Terminología como Asunto , Virología/organización & administración , Virus/genética , Virus/aislamiento & purificación
17.
Viruses ; 15(1)2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36680250

RESUMEN

Giovanni Paolo Martelli passed away on 8 January 2020 [...].


Asunto(s)
Plantas , Virología
18.
EFSA J ; 21(2): e07847, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36846393

RESUMEN

The EFSA Panel on Plant Health conducted a pest categorisation of cowpea mosaic virus (CPMV) for the EU territory. The identity of CPMV, a member of the genus Comovirus (family Secoviridae), is established and detection and identification methods are available. The pathogen is not included in the Commission Implementing Regulation (EU) 2019/2072. It has been reported from the Americas, and several countries in Africa and Asia and it is not known to be present in the EU in natural conditions. CPMV is considered a major pathogen of cowpea on which it causes symptoms ranging from mild to severe mosaic, chlorosis and necrosis. The virus has been reported sporadically on some other cultivated species of the family Fabaceae, including soybean and some common bean varieties. CPMV is transmitted by cowpea seeds, with uncertainty on the transmission rate. There is uncertainty on seed transmission by other Fabaceae host species due to lack of information. CPMV is also transmitted by several beetle species, one of which, Diabrotica virgifera virgifera, is present in the EU. Seeds for sowing of cowpea are identified as the major entry pathway. The cultivated area and production of cowpea in the EU territory are mainly limited to local varieties cultivated at a small scale in Mediterranean EU Member States. Should the pest establish in the EU, an impact is expected on cowpea crops at local scale. There is high uncertainty on the potential impact that CPMV would cause on other natural hosts cultivated in the EU due to the lack of information from the areas of CPMV's current distribution. Despite the uncertainty concerning the potential impact on bean and soybean crops in the EU, CPMV satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

19.
EFSA J ; 21(5): e08021, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37234272

RESUMEN

The EFSA Panel on Plant Health updated its 2017 pest categorisation of coconut cadang cadang viroid (CCCVd) for the EU territory due to new data on its host range. The identity of CCCVd, a member of the genus Cocadviroid (family Pospiviroidae), is established and detection and identification methods are available. It is included as a quarantine pest for the EU in the Commission Implementing Regulation (EU) 2019/2072. CCCVd has been reported from the Philippines and Malaysia. It is not known to be present in the EU. The host range of CCCVd is restricted to Arecaceae species (palms), in particular, coconut palm (Cocos nucifera) to which it causes a lethal disease. Oil palm (Elaeis guineensis) and buri palm (Corypha utan) are other natural hosts of CCCVd. Palm species of several genera, including Phoenix spp. and other species grown and/or cultivated in the EU, have been identified as potential hosts. The viroid is naturally transmitted at low rate by seeds and pollen and possibly by additional not yet identified natural transmission means. It can be transmitted through vegetative propagation applied to some palm species. Plants for planting including seeds of its hosts have been identified as the main entry pathway of CCCVd. Potential hosts of CCCVd are present in the EU, therefore establishment is possible. Should the pest establish in the EU, an impact is expected, with uncertainty on its magnitude. The Panel identified the susceptibility of palm species grown in the EU as a key uncertainty potentially affecting the conclusion of this pest categorisation. Nevertheless, the pest satisfies the criteria that are within the remit of EFSA to assess for this viroid to be regarded as potential Union quarantine pest.

20.
Arch Virol ; 157(8): 1629-33, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22592959

RESUMEN

Tepovirus is a new monotypic genus of plant viruses typified by potato virus T (PVT), a virus with helically constructed filamentous particles that are 640 nm long, previously classified as unassigned species in the family Betaflexiviridae. Virions have a single-stranded positive-sense polyadenylated RNA genome that is 6.5 kb in size, and a single type of coat protein with a size of 24 kDa. The viral genome contains three slightly overlapping ORFs encoding, respectively, the replication-related proteins (ORF1), a putative movement protein of the 30 K type (ORF2) and the coat protein (ORF3). Its structure and organization (number and order of genes) resembles that of trichoviruses and of citrus leaf blotch virus (CLBV, genus Citrivirus) but has a smaller size. Besides potato, the primary host, PVT can experimentally infect herbaceous hosts by mechanical inoculation. No vector is known, and transmission is through propagating material (tubers), seeds and pollen. PVT has a number of biological, physical and molecular properties that differentiate it from betaflexiviruses with a 30K-type movement protein. It is phylogenetically distant from all these viruses, but least so from grapevine virus A (GVA), the type member of the genus Vitivirus, with which it groups in trees constructed using the sequences of all of the genes.


Asunto(s)
Flexiviridae/clasificación , Flexiviridae/genética , Solanum tuberosum/virología , Secuencia de Aminoácidos , Composición de Base , Genoma Viral , Filogenia , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA