Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Skin Res Technol ; 25(5): 606-611, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30874339

RESUMEN

BACKGROUND: Contractile films that smooth the surface of skin upon drying are popular among consumers due to their "instant" effect and perceivable smoothing benefits. The objective of our study was to correlate an in vitro measurement of contractile force with in vivo smoothing performance, thereby enabling rapid screening of film-forming technologies for impactful cosmetic results. METHODS: We introduce and characterize an in vitro method to measure drying stress of film-containing formulations. This method is used to measure the drying stresses of seven different cosmetic film formulations. We then evaluate these formulas in a blinded clinical study, measuring their effect on under-eye and Crow's Feet area smoothing through bioinstrumentation (3D PRIMOS imaging) and blinded expert grading of images. RESULTS: The in vitro drying stress measurement was found to be repeatable and sensitive enough to detect differences between formulations with typical amounts of film-forming agents. Significant correlation was found between the in vitro drying stress measurements and under-eye smoothing measured by 3D imaging (R2  = 0.71). Expert grading confirmed that film formulas deliver perceivable smoothing in the under-eye and Crow's Feet regions 15 minutes after application. CONCLUSION: The in vitro method described here can be used to predict the efficacy of formulations that deliver smoothing benefits to consumers. For consumer use, the esthetic properties of a formula should be balanced with film performance, guided by this model which predicts skin smoothing efficacy.


Asunto(s)
Cosméticos/farmacología , Fármacos Dermatológicos/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Administración Cutánea , Cosméticos/administración & dosificación , Cara , Humanos , Técnicas In Vitro , Albúmina Sérica Bovina/farmacología , Cuidados de la Piel , Estrés Fisiológico/fisiología
2.
Nature ; 468(7322): 406-11, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-20927102

RESUMEN

DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.


Asunto(s)
Bacillus cereus/enzimología , Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN/fisiología , ADN/metabolismo , Alquilación , Secuencia de Bases , Biocatálisis , Cristalografía por Rayos X , ADN/química , ADN/genética , Hidrólisis , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Solventes/química , Termodinámica
3.
Biochim Biophys Acta ; 1834(1): 247-71, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23076011

RESUMEN

DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities.


Asunto(s)
ADN Glicosilasas/química , ADN/química , Animales , ADN/genética , ADN/metabolismo , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Humanos , Estructura Terciaria de Proteína , Relación Estructura-Actividad
4.
Methods ; 64(1): 59-66, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23876937

RESUMEN

DNA glycosylases excise a broad spectrum of alkylated, oxidized, and deaminated nucleobases from DNA as the initial step in base excision repair. Substrate specificity and base excision activity are typically characterized by monitoring the release of modified nucleobases either from a genomic DNA substrate that has been treated with a modifying agent or from a synthetic oligonucleotide containing a defined lesion of interest. Detection of nucleobases from genomic DNA has traditionally involved HPLC separation and scintillation detection of radiolabeled nucleobases, which in the case of alkylation adducts can be laborious and costly. Here, we describe a mass spectrometry method to simultaneously detect and quantify multiple alkylpurine adducts released from genomic DNA that has been treated with N-methyl-N-nitrosourea (MNU). We illustrate the utility of this method by monitoring the excision of N3-methyladenine (3 mA) and N7-methylguanine (7 mG) by a panel of previously characterized prokaryotic and eukaryotic alkylpurine DNA glycosylases, enabling a comparison of substrate specificity and enzyme activity by various methods. Detailed protocols for these methods, along with preparation of genomic and oligonucleotide alkyl-DNA substrates, are also described.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Reparación del ADN , ADN/química , Espectrometría de Masas en Tándem/métodos , Alquilación , Bacillus cereus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Aductos de ADN/química , Daño del ADN , Humanos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Salmonella typhi/genética
5.
Biochemistry ; 52(42): 7363-5, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24090276

RESUMEN

DNA glycosylase AlkD excises N7-methylguanine (7mG) by a unique but unknown mechanism, in which the damaged nucleotide is positioned away from the protein and the phosphate backbone is distorted. Here, we show by methylphosphonate substitution that a phosphate proximal to the lesion has a significant effect on the rate enhancement of 7mG depurination by the enzyme. Thus, instead of a conventional mechanism whereby protein side chains participate in N-glycosidic bond cleavage, AlkD remodels the DNA into an active site composed exclusively of DNA functional groups that provide the necessary chemistry to catalyze depurination.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , ADN/química , Guanina/análogos & derivados , Purinas/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , ADN Glicosilasas/química , Guanina/química , Guanina/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica
6.
J Biol Chem ; 286(43): 37429-45, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21878619

RESUMEN

In Saccharomyces cerevisiae, non-coding RNAs, including cryptic unstable transcripts (CUTs), are subject to degradation by the exosome. The Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex in S. cerevisiae is a nuclear exosome cofactor that recruits the exosome to degrade RNAs. Trf4/5 are poly(A) polymerases, Mtr4 is an RNA helicase, and Air1/2 are putative RNA-binding proteins that contain five CCHC zinc knuckles (ZnKs). One central question is how the TRAMP complex, especially the Air1/2 protein, recognizes its RNA substrates. To characterize the function of the Air1/2 protein, we used random mutagenesis of the AIR1/2 gene to identify residues critical for Air protein function. We identified air1-C178R and air2-C167R alleles encoding air1/2 mutant proteins with a substitution in the second cysteine of ZnK5. Mutagenesis of the second cysteine in AIR1/2 ZnK1-5 reveals that Air1/2 ZnK4 and -5 are critical for Air protein function in vivo. In addition, we find that the level of CUT, NEL025c, in air1 ZnK1-5 mutants is stabilized, particularly in air1 ZnK4, suggesting a role for Air1 ZnK4 in the degradation of CUTs. We also find that Air1/2 ZnK4 and -5 are critical for Trf4 interaction and that the Air1-Trf4 interaction and Air1 level are critical for TRAMP complex integrity. We identify a conserved IWRXY motif in the Air1 ZnK4-5 linker that is important for Trf4 interaction. We also find that hZCCHC7, a putative human orthologue of Air1 that contains the IWRXY motif, localizes to the nucleolus in human cells and interacts with both mammalian Trf4 orthologues, PAPD5 and PAPD7 (PAP-associated domain containing 5 and 7), suggesting that hZCCHC7 is the Air component of a human TRAMP complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Complejos Multiproteicos/metabolismo , Estabilidad del ARN/fisiología , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ARN Helicasas DEAD-box/genética , ADN Polimerasa Dirigida por ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Humanos , Complejos Multiproteicos/genética , Mutagénesis , Mutación Missense , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Biochemistry ; 48(4): 800-9, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19132922

RESUMEN

Non-invasive strategies for the analysis of endogenous DNA damage are of interest for the purpose of monitoring genomic exposure to biologically produced chemicals. We have focused our research on the biological processing of DNA adducts and how this may impact the observed products in biological matrixes. Preliminary research has revealed that pyrimidopurinone DNA adducts are subject to enzymatic oxidation in vitro and in vivo and that base adducts are better substrates for oxidation than the corresponding 2'-deoxynucleosides. We tested the possibility that structurally similar exocyclic base adducts may be good candidates for enzymatic oxidation in vitro. We investigated the in vitro oxidation of several endogenously occurring etheno adducts [1,N(2)-epsilon-guanine (1,N(2)-epsilon-Gua), N(2),3-epsilon-Gua, heptanone-1,N(2)-epsilon-Gua, 1,N(6)-epsilon-adenine (1,N(6)-epsilon-Ade), and 3,N(4)-epsilon-cytosine (3,N(4)-epsilon-Cyt)] and their corresponding 2'-deoxynucleosides. Both 1,N(2)-epsilon-Gua and heptanone-1,N(2)-epsilon-Gua were substrates for enzymatic oxidation in rat liver cytosol; heteronuclear NMR experiments revealed that oxidation occurred on the imidazole ring of each substrate. In contrast, the partially or fully saturated pyrimidopurinone analogues [i.e., 5,6-dihydro-M(1)G and 1,N(2)-propanoguanine (PGua)] and their 2'-deoxynucleoside derivatives were not oxidized. The 2'-deoxynucleoside adducts, 1,N(2)-epsilon-dG and 1,N(6)-epsilon-dA, underwent glycolytic cleavage in rat liver cytosol. Together, these data suggest that multiple exocyclic adducts undergo oxidation and glycolytic cleavage in vitro in rat liver cytosol, in some instances in succession. These multiple pathways of biotransformation produce an array of products. Thus, the biotransformation of exocyclic adducts may lead to an additional class of biomarkers suitable for use in animal and human studies.


Asunto(s)
Aductos de ADN/química , Aductos de ADN/metabolismo , Glucólisis/fisiología , Peroxidación de Lípido/fisiología , Nucleósidos de Purina/química , Nucleósidos de Purina/metabolismo , Animales , Bovinos , Reparación del ADN , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Humanos , Estrés Oxidativo/fisiología , Nucleósidos de Pirimidina/química , Nucleósidos de Pirimidina/metabolismo , Ratas
8.
DNA Repair (Amst) ; 13: 50-4, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24286669

RESUMEN

Tandem helical repeats have emerged as an important DNA binding architecture. DNA glycosylase AlkD, which excises N3- and N7-alkylated nucleobases, uses repeating helical motifs to bind duplex DNA and to selectively pause at non-Watson-Crick base pairs. Remodeling of the DNA backbone promotes nucleotide flipping of the lesion and the complementary base into the solvent and toward the protein surface, respectively. The important features of this new DNA binding architecture that allow AlkD to distinguish between damaged and normal DNA without contacting the lesion are poorly understood. Here, we show through extensive mutational analysis that DNA binding and N3-methyladenine (3mA) and N7-methylguanine (7mG) excision are dependent upon each residue lining the DNA binding interface. Disrupting electrostatic or hydrophobic interactions with the DNA backbone substantially reduced binding affinity and catalytic activity. These results demonstrate that residues seemingly only involved in general DNA binding are important for catalytic activity and imply that base excision is driven by binding energy provided by the entire substrate interface of this novel DNA binding architecture.


Asunto(s)
Adenina/análogos & derivados , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Guanina/análogos & derivados , Adenina/metabolismo , Dominio Catalítico , ADN Glicosilasas/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , Guanina/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
9.
Curr Opin Struct Biol ; 22(1): 101-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22154606

RESUMEN

Protein domains constructed from tandem α-helical repeats have until recently been primarily associated with protein scaffolds or RNA recognition. Recent crystal structures of human mitochondrial termination factor MTERF1 and Bacillus cereus alkylpurine DNA glycosylase AlkD bound to DNA revealed two new superhelical tandem repeat architectures capable of wrapping around the double helix in unique ways. Unlike DNA sequence recognition motifs that rely mainly on major groove read-out, MTERF and ALK motifs locate target sequences and aberrant nucleotides within DNA by resculpting the double-helix through extensive backbone contacts. Comparisons between MTERF and ALK repeats, together with recent advances in ssRNA recognition by Pumilio/FBF (PUF) domains, provide new insights into the fundamental principles of protein-nucleic acid recognition.


Asunto(s)
ADN/química , Secuencias Repetidas en Tándem , Animales , ADN/metabolismo , Humanos , Conformación de Ácido Nucleico , Especificidad por Sustrato
10.
PLoS One ; 7(6): e37692, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719845

RESUMEN

[PSI(+)] yeast, containing the misfolded amyloid conformation of Sup35 prion, is cured by inactivation of Hsp104. There has been controversy as to whether inactivation of Hsp104 by guanidine treatment or by overexpression of the dominant negative Hsp104 mutant, Hsp104-2KT, cures [PSI(+)] by the same mechanism- inhibition of the severing of the prion seeds. Using live cell imaging of Sup35-GFP, overexpression of Hsp104-2KT caused the foci to increase in size, then decrease in number, and finally disappear when the cells were cured, similar to that observed in cells cured by depletion of Hsp104. In contrast, guanidine initially caused an increase in foci size but then the foci disappeared before the cells were cured. By starving the yeast to make the foci visible in cells grown with guanidine, the number of cells with foci was found to correlate exactly with the number of [PSI(+)] cells, regardless of the curing method. Therefore, the fluorescent foci are the prion seeds required for maintenance of [PSI(+)] and inactivation of Hsp104 cures [PSI(+)] by preventing severing of the prion seeds. During curing with guanidine, the reduction in seed size is an Hsp104-dependent effect that cannot be explained by limited severing of the seeds. Instead, in the presence of guanidine, Hsp104 retains an activity that trims or reduces the size of the prion seeds by releasing Sup35 molecules that are unable to form new prion seeds. This Hsp104 activity may also occur in propagating yeast.


Asunto(s)
Proteínas de Choque Térmico/antagonistas & inhibidores , Priones , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Western Blotting , Proteínas de Choque Térmico/metabolismo , Microscopía Confocal , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Fluorescencia
11.
J Mol Biol ; 381(1): 13-23, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18585735

RESUMEN

DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from from those of other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases.


Asunto(s)
Daño del ADN/genética , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , ADN/metabolismo , Alquilación , Secuencia de Aminoácidos , Bacillus cereus/enzimología , Bacillus cereus/genética , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN Glicosilasas/genética , Humanos , Metilguanidina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA