Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nature ; 569(7757): E9, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31073227

RESUMEN

Change history: In this Letter, the y-axis values in Fig. 3f should go from 4 to -8 (rather than from 4 to -4), the y-axis values in Fig. 3h should appear next to the major tick marks (rather than the minor ticks), and in Fig. 1b, the arrows at the top and bottom of the electron-scale current sheet were going in the wrong direction; these errors have been corrected online.

2.
Nature ; 561(7722): 206-210, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30209369

RESUMEN

Earth and its magnetosphere are immersed in the supersonic flow of the solar-wind plasma that fills interplanetary space. As the solar wind slows and deflects to flow around Earth, or any other obstacle, a 'bow shock' forms within the flow. Under almost all solar-wind conditions, planetary bow shocks such as Earth's are collisionless, supercritical shocks, meaning that they reflect and accelerate a fraction of the incident solar-wind ions as an energy dissipation mechanism1,2, which results in the formation of a region called the ion foreshock3. In the foreshock, large-scale, transient phenomena can develop, such as 'hot flow anomalies'4-9, which are concentrations of shock-reflected, suprathermal ions that are channelled and accumulated along certain structures in the upstream magnetic field. Hot flow anomalies evolve explosively, often resulting in the formation of new shocks along their upstream edges5,10, and potentially contribute to particle acceleration11-13, but there have hitherto been no observations to constrain this acceleration or to confirm the underlying mechanism. Here we report observations of a hot flow anomaly accelerating solar-wind ions from roughly 1-10 kiloelectronvolts up to almost 1,000 kiloelectronvolts. The acceleration mechanism depends on the mass and charge state of the ions and is consistent with first-order Fermi acceleration14,15. The acceleration that we observe results from only the interaction of Earth's bow shock with the solar wind, but produces a much, much larger number of energetic particles compared to what would typically be produced in the foreshock from acceleration at the bow shock. Such autogenous and efficient acceleration at quasi-parallel bow shocks (the normal direction of which are within about 45 degrees of the interplanetary magnetic field direction) provides a potential solution to Fermi's 'injection problem', which requires an as-yet-unexplained seed population of energetic particles, and implies that foreshock transients may be important in the generation of cosmic rays at astrophysical shocks throughout the cosmos.

3.
Nature ; 557(7704): 202-206, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29743689

RESUMEN

Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

5.
Nature ; 537(7621): 515-517, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27487219

RESUMEN

Remote observations of the asteroid (1) Ceres from ground- and space-based telescopes have provided its approximate density and shape, leading to a range of models for the interior of Ceres, from homogeneous to fully differentiated. A previously missing parameter that can place a strong constraint on the interior of Ceres is its moment of inertia, which requires the measurement of its gravitational variation together with either precession rate or a validated assumption of hydrostatic equilibrium. However, Earth-based remote observations cannot measure gravity variations and the magnitude of the precession rate is too small to be detected. Here we report gravity and shape measurements of Ceres obtained from the Dawn spacecraft, showing that it is in hydrostatic equilibrium with its inferred normalized mean moment of inertia of 0.37. These data show that Ceres is a partially differentiated body, with a rocky core overlaid by a volatile-rich shell, as predicted in some studies. Furthermore, we show that the gravity signal is strongly suppressed compared to that predicted by the topographic variation. This indicates that Ceres is isostatically compensated, such that topographic highs are supported by displacement of a denser interior. In contrast to the asteroid (4) Vesta, this strong compensation points to the presence of a lower-viscosity layer at depth, probably reflecting a thermal rather than compositional gradient. To further investigate the interior structure, we assume a two-layer model for the interior of Ceres with a core density of 2,460-2,900 kilograms per cubic metre (that is, composed of CI and CM chondrites), which yields an outer-shell thickness of 70-190 kilometres. The density of this outer shell is 1,680-1,950 kilograms per cubic metre, indicating a mixture of volatiles and denser materials such as silicates and salts. Although the gravity and shape data confirm that the interior of Ceres evolved thermally, its partially differentiated interior indicates an evolution more complex than has been envisioned for mid-sized (less than 1,000 kilometres across) ice-rich rocky bodies.

6.
Nature ; 536(7614): 54-7, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27362221

RESUMEN

The typically dark surface of the dwarf planet Ceres is punctuated by areas of much higher albedo, most prominently in the Occator crater. These small bright areas have been tentatively interpreted as containing a large amount of hydrated magnesium sulfate, in contrast to the average surface, which is a mixture of low-albedo materials and magnesium phyllosilicates, ammoniated phyllosilicates and carbonates. Here we report high spatial and spectral resolution near-infrared observations of the bright areas in the Occator crater on Ceres. Spectra of these bright areas are consistent with a large amount of sodium carbonate, constituting the most concentrated known extraterrestrial occurrence of carbonate on kilometre-wide scales in the Solar System. The carbonates are mixed with a dark component and small amounts of phyllosilicates, as well as ammonium carbonate or ammonium chloride. Some of these compounds have also been detected in the plume of Saturn's sixth-largest moon Enceladus. The compounds are endogenous and we propose that they are the solid residue of crystallization of brines and entrained altered solids that reached the surface from below. The heat source may have been transient (triggered by impact heating). Alternatively, internal temperatures may be above the eutectic temperature of subsurface brines, in which case fluids may exist at depth on Ceres today.

7.
Phys Rev Lett ; 127(21): 215101, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34860109

RESUMEN

We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region in the Earth's magnetotail. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus, all three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing. These results shed light on the interplay between magnetic reconnection and current sheet drift instabilities in electron-scale current sheets and highlight the need for adopting a 3D description of the EDR, going beyond the two-dimensional and steady-state conception of reconnection.

8.
Nature ; 528(7581): 237-40, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26659183

RESUMEN

The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5-7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the 'snow line', which is the distance from the Sun at which water molecules condense.

9.
Nature ; 528(7581): 241-4, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26659184

RESUMEN

Studies of the dwarf planet (1) Ceres using ground-based and orbiting telescopes have concluded that its closest meteoritic analogues are the volatile-rich CI and CM carbonaceous chondrites. Water in clay minerals, ammoniated phyllosilicates, or a mixture of Mg(OH)2 (brucite), Mg2CO3 and iron-rich serpentine have all been proposed to exist on the surface. In particular, brucite has been suggested from analysis of the mid-infrared spectrum of Ceres. But the lack of spectral data across telluric absorption bands in the wavelength region 2.5 to 2.9 micrometres--where the OH stretching vibration and the H2O bending overtone are found--has precluded definitive identifications. In addition, water vapour around Ceres has recently been reported, possibly originating from localized sources. Here we report spectra of Ceres from 0.4 to 5 micrometres acquired at distances from ~82,000 to 4,300 kilometres from the surface. Our measurements indicate widespread ammoniated phyllosilicates across the surface, but no detectable water ice. Ammonia, accreted either as organic matter or as ice, may have reacted with phyllosilicates on Ceres during differentiation. This suggests that material from the outer Solar System was incorporated into Ceres, either during its formation at great heliocentric distance or by incorporation of material transported into the main asteroid belt.

10.
Phys Rev Lett ; 125(26): 265102, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449730

RESUMEN

Magnetic reconnection is of fundamental importance to plasmas because of its role in releasing and repartitioning stored magnetic energy. Previous results suggest that this energy is predominantly released as ion enthalpy flux along the reconnection outflow. Using Magnetospheric Multiscale data we find the existence of very significant electron energy flux densities in the vicinity of the magnetopause electron dissipation region, orthogonal to the ion energy outflow. These may significantly impact models of electron transport, wave generation, and particle acceleration.

11.
Phys Rev Lett ; 124(6): 065101, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32109113

RESUMEN

The first-order Fermi acceleration of electrons requires an injection of electrons into a mildly relativistic energy range. However, the mechanism of injection has remained a puzzle both in theory and observation. We present direct evidence for a novel stochastic shock drift acceleration theory for the injection obtained with Magnetospheric Multiscale observations at the Earth's bow shock. The theoretical model can explain electron acceleration to mildly relativistic energies at high-speed astrophysical shocks, which may provide a solution to the long-standing issue of electron injection.

12.
Phys Rev Lett ; 124(4): 045101, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32058767

RESUMEN

We report electrostatic Debye-scale turbulence developing within the diffusion region of asymmetric magnetopause reconnection with a moderate guide field using observations by the Magnetospheric Multiscale mission. We show that Buneman waves and beam modes cause efficient and fast thermalization of the reconnection electron jet by irreversible phase mixing, during which the jet kinetic energy is transferred into thermal energy. Our results show that the reconnection diffusion region in the presence of a moderate guide field is highly turbulent, and that electrostatic turbulence plays an important role in electron heating.

13.
Phys Rev Lett ; 125(2): 025103, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32701350

RESUMEN

We report measurements of lower-hybrid drift waves driving electron heating and vortical flows in an electron-scale reconnection layer under a guide field. Electrons accelerated by the electrostatic potential of the waves exhibit perpendicular and nongyrotropic heating. The vortical flows generate magnetic field perturbations comparable to the guide field magnitude. The measurements reveal a new regime of electron-wave interaction and how this interaction modifies the electron dynamics in the reconnection layer.

14.
J Microsc ; 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32617967

RESUMEN

Implementations of light-sheet microscopes are often incompatible with standard methods of sample mounting. Light-sheet microscopy uses orthogonal illumination and detection to create a thin sheet of light which does not illuminate the sample outside of the depth of field of the detection axis. Typically, this configuration involves a pair of orthogonal objectives which constrains the positioning and length of cover slips in the range of the detection objective. Here, we present an open-hardware sample mounting system for light-sheet microscopes using large detection objectives, built using 3D printed components and demonstrate the chamber's efficacy on live biological samples in a custom light-sheet microscope. LAY DESCRIPTION: Implementations of light-sheet microscopes are often incompatible with standard methods of sample mounting. Light-sheet microscopy creates a thin sheet of light at a certain depth of field within a volumetric sample. Typically, this configuration involves a pair of orthogonal objectives which constrains the positioning of samples and sample-mounting apparatus in range of the detection objective. To overcome the limitations of this setup, we present an open-hardware sample mounting system for light-sheet microscopes using large detection objectives, built using 3D printed components and demonstrate the chamber's efficacy on live biological samples in a custom light-sheet microscope.

15.
Sol Phys ; 294(3)2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31057186

RESUMEN

We have conducted a survey of 575 slow-to-fast stream interaction regions (SIRs) using Solar Terrestrial Relations Observatory (STEREO) A and B data, analyzing their properties while extending a Level-3 data product through 2016. Among 518 pristine SIRs, 54% are associated with heliospheric current sheet (HCS) crossings, and 34% are without any HCS crossing. The other 12% of the SIRs often occur in association with magnetic sectors shorter than three days. The SIRs with HCS crossings have slightly slower speeds but higher maximum number densities, magnetic-field strengths, dynamic pressures, and total pressures than the SIRs without an HCS. The iron charge state is higher throughout the SIRs with an HCS than the SIRs without an HCS, by about 1/3 charge unit. In contrast with the comparable phases of Solar Cycle 23, slightly more SIRs and higher recurrence rates are observed in the years 2009 - 2016 of Cycle 24, with a lower HCS association rate, possibly attributed to persistent equatorial coronal holes and more pseudo-streamers in this recent cycle. The solar-wind speed, peak magnetic field, and peak pressures of SIRs are all lower in this cycle, but the weakening is less than for the comparable background solar-wind parameters. Before STEREO-B lost contact in October 2014, 151 SIR pairs were observed by the twin spacecraft. Of the dual observations, the maximum speed is the best correlated of the plasma parameters. We have obtained a sample of plasma-parameter differences analogous to those that would be observed by a mission at Lagrange points 4 or 5. By studying several cases with large discrepancies between the dual observations, we investigate the effects of HCS relative location, tilt of stream interface, and small transients on the SIR properties. To resolve the physical reasons for the variability of SIR structures, mesoscale multi-point observations and time-dependent solar-wind modeling are ultimately required.

16.
Geophys Res Lett ; 46(11): 5707-5716, 2019 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-31423036

RESUMEN

Electromagnetic ion cyclotron (EMIC) waves at large L shells were observed away from the magnetic equator by the Magnetospheric MultiScale (MMS) mission nearly continuously for over four hours on 28 October 2015. During this event, the wave Poynting vector direction systematically changed from parallel to the magnetic field (toward the equator), to bidirectional, to antiparallel (away from the equator). These changes coincide with the shift in the location of the minimum in the magnetic field in the southern hemisphere from poleward to equatorward of MMS. The local plasma conditions measured with the EMIC waves also suggest that the outer magnetospheric region sampled during this event was generally unstable to EMIC wave growth. Together, these observations indicate that the bidirectionally propagating wave packets were not a result of reflection at high latitudes but that MMS passed through an off-equator EMIC wave source region associated with the local minimum in the magnetic field.

17.
Geophys Res Lett ; 46(12): 6287-6296, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31598018

RESUMEN

While vorticity defined as the curl of the velocity has been broadly used in fluid and plasma physics, this quantity has been underutilized in space physics due to low time resolution observations. We report Magnetospheric Multiscale (MMS) observations of enhanced electron vorticity in the vicinity of the electron diffusion region of magnetic reconnection. On 11 July 2017 MMS traversed the magnetotail current sheet, observing tailward-to-earthward outflow reversal, current-carrying electron jets in the direction along the electron meandering motion or out-of-plane direction, agyrotropic electron distribution functions, and dissipative signatures. At the edge of the electron jets, the electron vorticity increased with magnitudes greater than the electron gyrofrequency. The out-of-plane velocity shear along distance from the current sheet leads to the enhanced vorticity. This, in turn, contributes to the magnetic field perturbations observed by MMS. These observations indicate that electron vorticity can act as a proxy for delineating the electron diffusion region of magnetic reconnection.

18.
Nature ; 504(7478): 122-5, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24196707

RESUMEN

Olivine is a major component of the mantle of differentiated bodies, including Earth. Howardite, eucrite and diogenite (HED) meteorites represent regolith, basaltic-crust, lower-crust and possibly ultramafic-mantle samples of asteroid Vesta, which is the lone surviving, large, differentiated, basaltic rocky protoplanet in the Solar System. Only a few of these meteorites, the orthopyroxene-rich diogenites, contain olivine, typically with a concentration of less than 25 per cent by volume. Olivine was tentatively identified on Vesta, on the basis of spectral and colour data, but other observations did not confirm its presence. Here we report that olivine is indeed present locally on Vesta's surface but that, unexpectedly, it has not been found within the deep, south-pole basins, which are thought to be excavated mantle rocks. Instead, it occurs as near-surface materials in the northern hemisphere. Unlike the meteorites, the olivine-rich (more than 50 per cent by volume) material is not associated with diogenite but seems to be mixed with howardite, the most common surface material. Olivine is exposed in crater walls and in ejecta scattered diffusely over a broad area. The size of the olivine exposures and the absence of associated diogenite favour a mantle source, but the exposures are located far from the deep impact basins. The amount and distribution of observed olivine-rich material suggest a complex evolutionary history for Vesta.

19.
Phys Rev Lett ; 121(26): 265101, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636132

RESUMEN

We study spectral features of ion velocity and magnetic field correlations in the magnetosheath and in the solar wind using data from the Magnetospheric Multiscale (MMS) spacecraft. High-resolution MMS observations enable the study of the transition of these correlations between their magnetofluid character at larger scales into the subproton kinetic range, previously unstudied in spacecraft data. Cross-helicity, angular alignment, and energy partitioning is examined over a suitable range of scales, employing measurements based on the Taylor frozen-in approximation as well as direct two-spacecraft correlation measurements. The results demonstrate signatures of alignment at large scales. As kinetic scales are approached, the alignment between v and b is destroyed by demagnetization of protons.

20.
Geophys Res Lett ; 45(2): 578-584, 2018 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-29576666

RESUMEN

We report Magnetospheric Multiscale observations of electron pressure gradient electric fields near a magnetic reconnection diffusion region using a new technique for extracting 7.5 ms electron moments from the Fast Plasma Investigation. We find that the deviation of the perpendicular electron bulk velocity from E × B drift in the interval where the out-of-plane current density is increasing can be explained by the diamagnetic drift. In the interval where the out-of-plane current is transitioning to in-plane current, the electron momentum equation is not satisfied at 7.5 ms resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA