Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 165(2): 317-30, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058664

RESUMEN

BRAF(V600E) mutant colon cancers (CCs) have a characteristic gene expression signature that is also found in some tumors lacking this mutation. Collectively, they are referred to as "BRAF-like" tumors and represent some 20% of CCs. We used a shRNA-based genetic screen focused on genes upregulated in BRAF(V600E) CCs to identify vulnerabilities of this tumor subtype that might be exploited therapeutically. Here, we identify RANBP2 (also known as NUP358) as essential for survival of BRAF-like, but not for non-BRAF-like, CC cells. Suppression of RANBP2 results in mitotic defects only in BRAF-like CC cells, leading to cell death. Mechanistically, RANBP2 silencing reduces microtubule outgrowth from the kinetochores, thereby inducing spindle perturbations, providing an explanation for the observed mitotic defects. We find that BRAF-like CCs display far greater sensitivity to the microtubule poison vinorelbine both in vitro and in vivo, suggesting that vinorelbine is a potential tailored treatment for BRAF-like CCs.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Vinblastina/análogos & derivados , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Células Cultivadas , Neoplasias del Colon/clasificación , Neoplasias del Colon/tratamiento farmacológico , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Trasplante de Neoplasias , Proteínas de Complejo Poro Nuclear/genética , Proteínas Proto-Oncogénicas B-raf/genética , Vinblastina/administración & dosificación , Vinblastina/farmacología , Vinorelbina
2.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783705

RESUMEN

Tumor mutational signatures have gained prominence in cancer research, yet the lack of standardized methods hinders reproducibility and robustness. Leveraging colorectal cancer (CRC) as a model, we explored the influence of computational parameters on mutational signature analyses across 230 CRC cell lines and 152 CRC patients. Results were validated in three independent datasets: 483 endometrial cancer patients stratified by mismatch repair (MMR) status, 35 lung cancer patients by smoking status and 12 patient-derived organoids (PDOs) annotated for colibactin exposure. Assessing various bioinformatic tools, reference datasets and input data sizes including whole genome sequencing, whole exome sequencing and a pan-cancer gene panel, we demonstrated significant variability in the results. We report that the use of distinct algorithms and references led to statistically different results, highlighting how arbitrary choices may induce variability in the mutational signature contributions. Furthermore, we found a differential contribution of mutational signatures between coding and intergenic regions and defined the minimum number of somatic variants required for reliable mutational signature assignment. To facilitate the identification of the most suitable workflows, we developed Comparative Mutational Signature analysis on Coding and Extragenic Regions (CoMSCER), a bioinformatic tool which allows researchers to easily perform comparative mutational signature analysis by coupling the results from several tools and public reference datasets and to assess mutational signature contributions in coding and non-coding genomic regions. In conclusion, our study provides a comparative framework to elucidate the impact of distinct computational workflows on mutational signatures.


Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Mutación , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Biología Computacional/métodos , Flujo de Trabajo , Línea Celular Tumoral , Secuenciación del Exoma/métodos , Femenino , Algoritmos
3.
Nature ; 552(7683): 116-120, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29186113

RESUMEN

Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.


Asunto(s)
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Reparación de la Incompatibilidad de ADN/genética , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/patología , Animales , Anticuerpos Antineoplásicos/inmunología , Anticuerpos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Homólogo 1 de la Proteína MutL/deficiencia , Homólogo 1 de la Proteína MutL/genética , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Escape del Tumor/genética , Escape del Tumor/inmunología
4.
Mol Oncol ; 18(2): 241-244, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38308461

RESUMEN

Drug resistance represents a major limitation to the long-term efficacy of anti-cancer treatments. The commonly accepted view is that the selection of inheritable genetic mechanisms governs the development of secondary resistance. However, compelling evidence suggests an important role for adaptive cell plasticity and non-genetic mechanisms in the development of therapy resistance. The two phenomena are not mutually exclusive and the interplay between genetic and non-genetic mechanisms may affect tumor evolution during treatment. A broader characterization of the genetic and non-genetic mechanisms of drug resistance may pave the way for more precise and effective therapeutic strategies to overcome resistance.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Resistencia a Medicamentos , Epigénesis Genética , Resistencia a Antineoplásicos/genética
5.
NPJ Precis Oncol ; 8(1): 231, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402170

RESUMEN

The synthetic lethal effect observed with the use of PARP inhibitors (PARPi) with tumors characterized by the loss of key players in the homologous recombination (HR) pathway, commonly referred to as "BRCAness", is maintaining high interest in oncology. While BRCAness is a well-established feature in breast, ovarian, prostate, and pancreatic carcinomas, our recent findings indicate that up to 15% of colorectal cancers (CRC) also harbor defects in the HR pathway, presenting promising opportunities for innovative therapeutic strategies in CRC patients. We developed a new tool called HRDirect, which builds upon the HRDetect algorithm and is able to predict HR deficiency (HRD) from reference-free tumor samples. We validated HRDirect using matched breast cancer and CRC patient samples. Subsequently, we assessed its efficacy in predicting response to the PARP inhibitor olaparib by comparing it with two other commercial assays: AmoyDx HRD by Amoy Diagnostics and the TruSight Oncology 500 HRD (TSO500-HRD) panel by Illumina NGS technology. While all three approaches successfully identified the most PARPi-sensitive CRC models, HRDirect demonstrated superior precision in distinguishing resistant models compared to AmoyDX and TSO500-HRD, which exhibited overlapping scores between sensitive and resistant cells. Furthermore, we propose integrating HRDirect scoring with ATM and RAD51C immunohistochemical analysis as part of our "composite biomarker approach" to enhance the identification of HRD tumors, with an immediate translational and clinical impact for CRC personalized treatment.

6.
Cell Biosci ; 14(1): 115, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238058

RESUMEN

BACKGROUND: Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19. RESULTS: Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na+/K+-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release. CONCLUSION: Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.

7.
Mol Oncol ; 18(6): 1460-1485, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38468448

RESUMEN

Multiple strategies are continuously being explored to expand the drug target repertoire in solid tumors. We devised a novel computational workflow for transcriptome-wide gene expression outlier analysis that allows the systematic identification of both overexpression and underexpression events in cancer cells. Here, it was applied to expression values obtained through RNA sequencing in 226 colorectal cancer (CRC) cell lines that were also characterized by whole-exome sequencing and microarray-based DNA methylation profiling. We found cell models displaying an abnormally high or low expression level for 3533 and 965 genes, respectively. Gene expression abnormalities that have been previously associated with clinically relevant features of CRC cell lines were confirmed. Moreover, by integrating multi-omics data, we identified both genetic and epigenetic alternations underlying outlier expression values. Importantly, our atlas of CRC gene expression outliers can guide the discovery of novel drug targets and biomarkers. As a proof of concept, we found that CRC cell lines lacking expression of the MTAP gene are sensitive to treatment with a PRMT5-MTA inhibitor (MRTX1719). Finally, other tumor types may also benefit from this approach.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Transcriptoma , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Transcriptoma/genética , Perfilación de la Expresión Génica , Metilación de ADN/genética
8.
Cell Rep Med ; 5(2): 101376, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38228147

RESUMEN

The bacterial genotoxin colibactin promotes colorectal cancer (CRC) tumorigenesis, but systematic assessment of its impact on DNA repair is lacking, and its effect on response to DNA-damaging chemotherapeutics is unknown. We find that CRC cell lines display differential response to colibactin on the basis of homologous recombination (HR) proficiency. Sensitivity to colibactin is induced by inhibition of ATM, which regulates DNA double-strand break repair, and blunted by HR reconstitution. Conversely, CRC cells chronically infected with colibactin develop a tolerant phenotype characterized by restored HR activity. Notably, sensitivity to colibactin correlates with response to irinotecan active metabolite SN38, in both cell lines and patient-derived organoids. Moreover, CRC cells that acquire colibactin tolerance develop cross-resistance to SN38, and a trend toward poorer response to irinotecan is observed in a retrospective cohort of CRCs harboring colibactin genomic island. Our results shed insight into colibactin activity and provide translational evidence on its chemoresistance-promoting role in CRC.


Asunto(s)
Neoplasias Colorrectales , Escherichia coli , Péptidos , Policétidos , Humanos , Irinotecán/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Estudios Retrospectivos , ADN/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología
9.
Nat Rev Cancer ; 24(10): 694-717, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39223250

RESUMEN

The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Tolerancia a Medicamentos
10.
J Exp Clin Cancer Res ; 42(1): 120, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37170152

RESUMEN

BACKGROUND: MET-driven acquired resistance is emerging with unanticipated frequency in patients relapsing upon molecular therapy treatments. However, the determination of MET amplification remains challenging using both standard and next-generation sequencing-based methodologies. Liquid biopsy is an effective, non-invasive approach to define cancer genomic profiles, track tumor evolution over time, monitor treatment response and detect molecular resistance in advance. Circular RNAs (circRNAs), a family of RNA molecules that originate from a process of back-splicing, are attracting growing interest as potential novel biomarkers for their stability in body fluids. METHODS: We identified a circRNA encoded by the MET gene (circMET) and exploited blood-derived cell-free RNA (cfRNA) and matched tumor tissues to identify, stratify and monitor advanced cancer patients molecularly characterized by high MET activity, generally associated with genomic amplification. RESULTS: Using publicly available bioinformatic tools, we discovered that the MET locus transcribes several circRNA molecules, but only one candidate, circMET, was particularly abundant. Deeper molecular analysis revealed that circMET levels positively correlated with MET expression and activity, especially in MET-amplified cells. We developed a circMET-detection strategy and, in parallel, we performed standard FISH and IHC analyses in the same specimens to assess whether circMET quantification could identify patients displaying high MET activity. Longitudinal monitoring of circMET levels in the plasma of selected patients revealed the early emergence of MET amplification as a mechanism of acquired resistance to molecular therapies. CONCLUSIONS: We found that measurement of circMET levels allows identification and tracking of patients characterized by high MET activity. Circulating circMET (ccMET) detection and analysis could be a simple, cost-effective, non-invasive approach to better implement patient stratification based on MET expression, as well as to dynamically monitor over time both therapy response and clonal evolution during treatment.


Asunto(s)
Neoplasias , ARN Circular , Humanos , Biomarcadores , Biología Computacional , Neoplasias/genética , ARN/genética , ARN/metabolismo , ARN Circular/genética
11.
Nat Genet ; 54(7): 976-984, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817983

RESUMEN

Compelling evidence shows that cancer persister cells represent a major limit to the long-term efficacy of targeted therapies. However, the phenotype and population dynamics of cancer persister cells remain unclear. We developed a quantitative framework to study persisters by combining experimental characterization and mathematical modeling. We found that, in colorectal cancer, a fraction of persisters slowly replicates. Clinically approved targeted therapies induce a switch to drug-tolerant persisters and a temporary 7- to 50-fold increase of their mutation rate, thus increasing the number of persister-derived resistant cells. These findings reveal that treatment may influence persistence and mutability in cancer cells and pinpoint inhibition of error-prone DNA polymerases as a strategy to restrict tumor recurrence.


Asunto(s)
Neoplasias Colorrectales , Tasa de Mutación , Antibacterianos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Humanos , Dinámica Poblacional
12.
Proc Natl Acad Sci U S A ; 105(52): 20864-9, 2008 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19106301

RESUMEN

Mutations in oncogenes and tumor suppressor genes are responsible for tumorigenesis and represent favored therapeutic targets in oncology. We exploited homologous recombination to knock-in individual cancer mutations in the genome of nontransformed human cells. Sequential introduction of multiple mutations was also achieved, demonstrating the potential of this strategy to construct tumor progression models. Knock-in cells displayed allele-specific activation of signaling pathways and mutation-specific phenotypes different from those obtainable by ectopic oncogene expression. Profiling of a library of pharmacological agents on the mutated cells showed striking sensitivity or resistance phenotypes to pathway-targeted drugs, often matching those of tumor cells carrying equivalent cancer mutations. Thus, knock-in of single or multiple cancer alleles provides a pharmacogenomic platform for the rational design of targeted therapies.


Asunto(s)
Alelos , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Sustitución del Gen , Genes Supresores de Tumor , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapéutico , Línea Celular , Sistemas de Liberación de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Biológicos
13.
Cancer Discov ; 11(8): 1886-1895, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33952585

RESUMEN

Cancer is characterized by loss of the regulatory mechanisms that preserve homeostasis in multicellular organisms, such as controlled proliferation, cell-cell adhesion, and tissue differentiation. The breakdown of multicellularity rules is accompanied by activation of "selfish," unicellular-like life features, which are linked to the increased adaptability to environmental changes displayed by cancer cells. Mechanisms of stress response, resembling those observed in unicellular organisms, are actively exploited by mammalian cancer cells to boost genetic diversity and increase chances of survival under unfavorable conditions, such as lack of oxygen/nutrients or exposure to drugs. Unicellular organisms under stressful conditions (e.g., antibiotic treatment) stop replicating or slowly divide and transiently increase their mutation rates to foster diversity, a process known as adaptive mutability. Analogously, tumor cells exposed to drugs enter a persister phenotype and can reduce DNA replication fidelity, which in turn fosters genetic diversity. The implications of adaptive evolution are of relevance to understand resistance to anticancer therapies.


Asunto(s)
Bacterias , Evolución Biológica , Homeostasis , Neoplasias , Humanos
14.
Am J Respir Cell Mol Biol ; 42(2): 250-4, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19448152

RESUMEN

Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand for the N/OFQ peptide receptor (NOP), inhibits tachykinin release in the airway of several animal models. The aim of this study was to investigate the role of the N/OFQ-NOP receptor system in bronchoconstriction induced by sensory nerve activation in the isolated mouse lung. We used C57BL/6J NOP(+/+), NOP(-/-), and Balb/C mice sensitized (or not) to ovalbumin. Bronchopulmonary function coupled with measurements of endogenous N/OFQ levels before and after capsaicin-induced bronchoconstriction in the presence or absence of NOP-selective agonists/antagonists are presented. N/OFQ significantly inhibited capsaicin-induced bronchoconstriction in both naive and sensitized mice, these latter animals displaying airway hyperresponsiveness to capsaicin. The inhibitory effect of N/OFQ were not observed in NOP(-/-) mice, and were mimicked/abolished by the selective NOP agonist/antagonist University of Ferrara Peptide (UFP)-112/UFP-101 in NOP(+/+) mice. UFP-101 alone potentiated the effect of capsaicin in naive mice, but not in sensitized mice. Endogenous N/OFQ levels significantly decreased in sensitized mice relative to naive mice. We have demonstrated that a reduction in endogenous N/OFQ, or the lack of its receptor, causes an increase in capsaicin-induced bronchoconstriction, implying a role for the N/OFQ-NOP receptor system in the modulation of capsaicin effects. Moreover, for the first time, we document differential airway responsiveness to capsaicin between naive and sensitized mice due, at least in part, to decreased endogenous N/OFQ levels in sensitized mice.


Asunto(s)
Broncoconstricción/fisiología , Pulmón/inervación , Pulmón/fisiología , Péptidos Opioides/fisiología , Células Receptoras Sensoriales/fisiología , Alérgenos/administración & dosificación , Animales , Broncoconstricción/efectos de los fármacos , Broncoconstricción/inmunología , Capsaicina/farmacología , Técnicas In Vitro , Pulmón/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos Opioides/deficiencia , Péptidos Opioides/genética , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Receptores Opioides/fisiología , Receptor de Nociceptina , Nociceptina
15.
Clin Cancer Res ; 26(6): 1372-1384, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31831554

RESUMEN

PURPOSE: Defects in the homologous recombination (HR) repair pathway are of clinical interest due to sensitivity of HR-deficient cells to PARP inhibitors. We were interested in defining PARP vulnerability in patients with metastatic colorectal cancer (mCRC) carrying KRAS and BRAF mutations who display poor prognosis, have limited therapeutic options, and represent an unmet clinical need. EXPERIMENTAL DESIGN: We tested colorectal cancer cell lines, patient-derived organoids (PDO), and patient-derived xenografts (PDX) enriched for KRAS and BRAF mutations for sensitivity to the PARP inhibitor olaparib, and the chemotherapeutic agents oxaliplatin and 5-fluorouracil (5-FU). Genomic profiles and DNA repair proficiency of colorectal cancer models were compared with pharmacologic response. RESULTS: Thirteen of 99 (around 13%) colorectal cancer cell lines were highly sensitive to clinically active concentrations of olaparib and displayed functional deficiency in HR. Response to PARP blockade was positively correlated with sensitivity to oxaliplatin in colorectal cancer cell lines as well as patient-derived organoids. Treatment of PDXs with olaparib impaired tumor growth and maintenance therapy with PARP blockade after initial oxaliplatin response delayed disease progression in mice. CONCLUSIONS: These results indicate that a colorectal cancer subset characterized by poor prognosis and limited therapeutic options is vulnerable to PARP inhibition and suggest that PDO-based drug-screening assays can be used to identify patients with colorectal cancer likely to benefit from olaparib. As patients with mCRC almost invariably receive therapies based on oxaliplatin, "maintenance" treatment with PARP inhibitors warrants further clinical investigation.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Oxaliplatino/farmacología , Ftalazinas/farmacología , Piperazinas/farmacología , Reparación del ADN por Recombinación , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Science ; 366(6472): 1473-1480, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31699882

RESUMEN

The emergence of drug resistance limits the efficacy of targeted therapies in human tumors. The prevalent view is that resistance is a fait accompli: when treatment is initiated, cancers already contain drug-resistant mutant cells. Bacteria exposed to antibiotics transiently increase their mutation rates (adaptive mutability), thus improving the likelihood of survival. We investigated whether human colorectal cancer (CRC) cells likewise exploit adaptive mutability to evade therapeutic pressure. We found that epidermal growth factor receptor (EGFR)/BRAF inhibition down-regulates mismatch repair (MMR) and homologous recombination DNA-repair genes and concomitantly up-regulates error-prone polymerases in drug-tolerant (persister) cells. MMR proteins were also down-regulated in patient-derived xenografts and tumor specimens during therapy. EGFR/BRAF inhibition induced DNA damage, increased mutability, and triggered microsatellite instability. Thus, like unicellular organisms, tumor cells evade therapeutic pressures by enhancing mutability.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Terapia Molecular Dirigida , Mutagénesis , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Adaptación Biológica/genética , Regulación hacia Abajo , Humanos , Selección Genética
17.
Nat Commun ; 9(1): 2287, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29895949

RESUMEN

Attempts at eradicating metastatic cancers with targeted therapies are limited by the emergence of resistant subclones bearing heterogeneous (epi)genetic changes. We used colorectal cancer (CRC) to test the hypothesis that interfering with an ancestral oncogenic event shared by all the malignant cells (such as WNT pathway alterations) could override heterogeneous mechanisms of acquired drug resistance. Here, we report that in CRC-resistant cell populations, phylogenetic analysis uncovers a complex subclonal architecture, indicating parallel evolution of multiple independent cellular lineages. Functional and pharmacological modulation of WNT signalling induces cell death in CRC preclinical models from patients that relapsed during the treatment, regardless of the drug type or resistance mechanisms. Concomitant blockade of WNT and MAPK signalling restrains the emergence of drug-resistant clones. Reliance upon the WNT-APC pathway is preserved throughout the branched genomic drift associated with emergence of treatment relapse, thus offering the possibility of a common therapeutic strategy to overcome secondary drug resistance.


Asunto(s)
Neoplasias Colorrectales/genética , Flujo Genético , Terapia Molecular Dirigida , Mutación , Animales , Biopsia , Técnicas de Cultivo de Célula , Linaje de la Célula , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia , Trasplante de Neoplasias , Oncogenes , Filogenia , Transducción de Señal , Vía de Señalización Wnt
18.
Cancer Cell ; 34(1): 148-162.e7, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990497

RESUMEN

Targeting HER2 is effective in 24% of ERBB2 amplified metastatic colorectal cancer; however, secondary resistance occurs in most of the cases. We studied the evolution of individual metastases during treatment to discover spatially resolved determinants of resistance. Circulating tumor DNA (ctDNA) analysis identified alterations associated with resistance in the majority of refractory patients. ctDNA profiles and lesion-specific radiographic reports revealed organ- or metastasis-private evolutionary patterns. When radiologic assessments documented progressive disease in target lesions, response to HER2 blockade was retained in other metastases. Genomic and functional analyses on samples and cell models from eight metastases of a patient co-recruited to a postmortem study unveiled lesion-specific evolutionary trees and pharmacologic vulnerabilities. Lesion size and contribution of distinct metastases to plasma ctDNA were correlated.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Lapatinib/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Receptor ErbB-2/antagonistas & inhibidores , Tomografía Computarizada por Rayos X , Trastuzumab/administración & dosificación , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/genética , Adenocarcinoma/secundario , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Fosfatidilinositol 3-Quinasa Clase I/genética , Toma de Decisiones Clínicas , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Amplificación de Genes , Humanos , Italia , Lapatinib/efectos adversos , Biopsia Líquida , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Valor Predictivo de las Pruebas , Supervivencia sin Progresión , Inhibidores de Proteínas Quinasas/efectos adversos , Receptor ErbB-2/genética , Factores de Riesgo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Trastuzumab/efectos adversos , Resultado del Tratamiento , Células Tumorales Cultivadas , Proteínas ras/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-28003276

RESUMEN

Precision oncology relies on targeted drugs, such as kinase inhibitors, that are presently administered based on molecular profiles obtained from surgical or bioptic tissue samples. The inherent ability of human tumors to molecularly evolve in response to drug pressures represents a daunting diagnostic challenge. Circulating free DNA (cfDNA) released from primary and metastatic lesions can be used to draw molecular maps that can be continuously updated to match each tumor's evolution. We will present evidence that liquid biopsies can effectively interrogate how targeted therapies drive lesion-specific drug-resistance mechanisms. The impact of drug-induced molecular heterogeneity on subsequent lines of treatment will also be discussed.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , ADN de Neoplasias/genética , Resistencia a Antineoplásicos/genética , Humanos , Biopsia Líquida/métodos , Mutación
20.
Ann N Y Acad Sci ; 1089: 487-95, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17261791

RESUMEN

The literature on immunosenescence has focused mainly on T cell impairment. With the aim of gaining insight into B cell immunosenescence, we investigated the serum immunoglobulin levels in a cohort of 166 subjects (20-106 years). Serum IgG (and IgG subclasses) were quantified by the nephelometric technique, IgE by CAP system fluorescence enzyme immunoassay, and IgD by radial immunodiffusion (RID). There was an age-related increase of IgG and IgA; the IgG age-related increase was significant only in men, but IgG1 levels showed an age-related increase both in men and women, whereas IgG3 showed an age-related increase only in men. IgE levels remain unchanged, whereas IgD and IgM serum levels decreased with age; the IgM age-related decrease was significant only in women, likely due to the relatively small sample of aged men. Thus, in the elderly the B cell repertoire available to respond to new antigenic challenge is decreased. A lot of memory IgD- B cells are filling immunological space and the amount of naïve IgD+ B cells is dramatically decreased. This shift away from a population of predominantly naïve B cells obviously reflects the influences of cumulative exposure to foreign pathogens over time. These age-dependent B cell changes indicate that advanced age is a condition characterized by lack of clonotypic immune response to new extracellular pathogens. In any event, the increase of memory B cells and the loss of naïve B cells, as measured by serum IgD levels, could represent hallmarks of immunosenescence and could provide useful biomarkers possibly related to the life span of humans.


Asunto(s)
Linfocitos B/inmunología , Inmunoglobulinas/sangre , Longevidad/inmunología , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Femenino , Humanos , Memoria Inmunológica , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA